

Exam Ref DP-900 Microsoft Azure
Data Fundamentals

Daniel A. Seara
Francesco Milano

Exam Ref DP-900 Microsoft Azure Data
Fundamentals
Published with the authorization of Microsoft Corporation by:
Pearson Education, Inc.

Copyright © 2021 By Lucient Data Sa.
All rights reserved. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permissions, request forms, and the appropriate
contacts within the Pearson Education Global Rights & Permissions
Department, please visit www.pearson.com/permissions
No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the
preparation of this book, the publisher and author assume no responsibility
for errors or omissions. Nor is any liability assumed for damages resulting
from the use of the information contained herein.
ISBN-13: 978-0-13-725216-9
ISBN-10: 0-13-725216-1
Library of Congress Control Number: 2021931458
ScoutAutomatedPrintCode

Trademarks
Microsoft and the trademarks listed at http://www.microsoft.com on the
“Trademarks” webpage are trademarks of the Microsoft group of
companies. Lucient is a trademark of Lucient Data SA and the Lucient
group of companies. All other marks are property of their respective
owners.

Warning and Disclaimer

http://www.pearson.com/permissions
http://www.microsoft.com/

Every effort has been made to make this book as complete and as accurate
as possible, but no warranty or fitness is implied. The information provided
is on an “as is” basis. The author, the publisher, and Microsoft Corporation
shall have neither liability nor responsibility to any person or entity with
respect to any loss or damages arising from the information contained in
this book or from the use of the programs accompanying it.

Special Sales
For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover
designs; and content particular to your business, training goals, marketing
focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.
For government sales inquiries, please contact
governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact
intlcs@pearson.com.

Credits

Editor-In-Chief
Brett Bartow
Executive Editor
Loretta Yates
Development Editor
Songlin Qiu
Sponsoring Editor
Charvi Arora
Managing Editor
Sandra Schroeder
Senior Project Editor
Tracey Croom
Copy Editor
Liz Welch

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Indexer
Valerie Haynes Perry
Proofreader
Scout Festa
Technical Editor
Herbert Albert
Editorial Assistant
Cindy Teeters
Cover Designer
Twist Creative, Seattle

Contents at a glance

Introduction

Chapter 1 Describe core data concepts

Chapter 2 Describe how to work with relational data on Azure

Chapter 3 Describe how to work with non-relational data on Azure

Chapter 4 Describe an analytics workload on Azure

Index

Contents

Introduction
Organization of this book
Preparing for the exam
Microsoft certifications
Quick access to online references
Errata, updates & book support
Stay in touch

Chapter 1 Describe core data concepts
Skill 1.1: Describe types of core data workloads

Describe streaming data
Describe batch data
Describe the difference between batch and streaming
data
Describe the characteristics of relational data

Skill 1.2: Describe data analytics core concepts
Describe analytics techniques
Describe the concepts of ETL, ELT, and data processing
Describe data visualization and basic chart types

Chapter summary
Thought experiment
Thought experiment answers

Chapter 2 Describe how to work with relational data on Azure

Skill 2.1: Describe relational data workloads
Identify the right data offering for a relational workload
Describe relational data structures

Skill 2.2: Describe relational Azure data services
Describe and compare PaaS, IaaS, and SaaS delivery
models
Describe Azure SQL Database
Describe Azure Synapse Analytics
Describe SQL Server on Azure Virtual Machine
Describe Azure Database for PostgreSQL, Azure
Database for MariaDB, and Azure Database for MySQL
Describe Azure SQL Managed Instance

Skill 2.3: Identify basic management tasks for relational data
Describe provisioning and deploying relational data
services
Describe method for deployment including ARM
templates and Azure Portal
Identify data security components (e.g., firewall,
authentication)
Identify basic connectivity issues (e.g., accessing from
on-premises, access with Azure VNets, access from
internet, authentication, firewalls)
Identify query tools (e.g., Azure Data Studio, SQL
Server Management Studio, sqlcmd utility, etc.)

Skill 2.4: Describe query techniques for data using SQL
language

Compare DDL versus DML
Query relational data in PostgreSQL, MySQL, and
Azure SQL Database

Chapter summary
Thought experiment

Thought experiment answers

Chapter 3 Describe how to work with non-relational data on Azure
Skill 3.1: Describe non-relational data workloads

Describe the characteristics of non-relational data
Describe the types of non-relational and NoSQL data
Choose the correct data store
Determine when to use non-relational data

Skill 3.2: Describe non-relational data offerings on Azure
Identify Azure data services for non-relational
workloads
Describe Azure Cosmos DB API
Describe Azure Storage
Describe Azure Table storage
Describe Azure Blob storage
Describe Azure File storage

Skill 3.3: Identify basic management tasks for non-relational
data

Describe provisioning and deployment of non-relational
data services
Describe method for deployment including the Azure
portal, Azure Resource Manager templates, Azure
PowerShell, and the Azure command-line interface
(CLI)
Identify data security components (e.g., firewall,
authentication, encryption)
Identify basic connectivity issues (e.g., accessing from
on-premises, access with Azure VNets, access from
internet, authentication, firewalls)
Identify management tools for non-relational data

Chapter summary

Thought experiment
Thought experiment answers

Chapter 4 Describe an analytics workload on Azure
Skill 4.1: Describe analytics workloads
Skill 4.2: Describe the components of a modern data warehouse

Describe modern data warehousing architecture and
workload
Describe Azure data services for modern data
warehousing such as Azure Data Lake, Azure Synapse
Analytics, Azure Databricks, and Azure HDInsight

Skill 4.3: Describe data ingestion and processing on Azure
Describe the components of Azure Data Factory (e.g.,
pipeline, activities, etc.)
Describe data processing options (e.g., Azure
HDInsight, Azure Databricks, Azure Synapse Analytics,
Azure Data Factory)
Describe common practices for data loading

Skill 4.4: Describe data visualization in Microsoft Power BI
Describe the workflow in Power BI
Describe the role of interactive reports
Describe the role of dashboards
Describe the role of paginated reporting

Chapter summary
Thought experiment
Thought experiment answers

Index

Acknowledgments

I would like to thank the following people, who helped me during the work
on this book and in my life, both professional and personal.

First, thank you to my wife, Nilda Beatriz Díaz, for helping me daily be
a better person and a better professional, and for sharing with me the
adventure of this life and this astounding work, all around the world.

I would also like to thank all the members of our team at Lucient, who
walk with me in the path of knowledge and in the process of providing our
customers with the services they deserve. For this particular book, one of
them, Herbert Albert, was especially helpful, reviewing all our technical
content. Thanks again, my friend; I owe you another set of Argentinian-
style pizzas.

And finally, I would like to thank Lilach Ben-Gan, who makes my
English writing more readable and clearer for you, the reader, and keeps
our writing work flowing smoothly and on time.

Daniel Seara

While I am used to preparing and delivering live sessions, courses, and
short articles, this was my first time writing a technical book. It is a very
intensive and unique experience and, at the same time, the perfect occasion
to rearrange and extend my knowledge about the topics covered. But also, it
is something I could not have achieved alone.

I have to say a big thank-you to my wife and daughters for living many
hours with a “ghost” in their house. It must not have been easy at times, but
they heartfully managed to give me all the time I needed.

I would also like to thank everyone at Lucient, in particular the Italian
team that took care of additional work to compensate for my months-long

disappearance. Two special mentions: One is for Lilach Ben-Gan, who had
the thankless task of improving my English and making it understandable,
and the other one is for Herbert Albert, whose precious suggestions helped
immensely in shaping the technical content to its best possible form.

Finally, a big hug goes to my parents and parents-in-law for being our
great helping hand. I really appreciate all your unrelenting efforts, and
knowing you were there made the writing of this book more feasible.

Francesco Milano

The authors would also like to thank the team at Pearson who helped with
the production of this book: Loretta Yates, Charvi Arora, Songlin Qiu, Liz
Welch, Danielle Foster, and Tracey Croom.

About the authors

Daniel A. Seara is an experienced software developer. He has more than 20
years’ experience as a technical instructor, developer, and development
consultant.

Daniel has worked as a software consultant in a wide range of
companies in Argentina, Spain, and Peru. He has been asked by Peruvian
Microsoft Consulting Services to help several companies in their migration
path to .NET Framework development.

Daniel was Argentina’s Microsoft Regional Director for 4 years and was
the first nominated Global Regional Director, a position he held for two
years. He was also the manager of the Desarrollador Cinco Estrellas I
(Five-Star Developer) program, one of the most successful training projects
in Latin America. Daniel held a Visual Basic MVP status for more than 10
years, as well as a SharePoint Server MVP status from 2008 until 2014.
Additionally, Daniel is the founder and “Dean” of Universidad .NET, the
most visited Spanish language site on which to learn .NET.

In 2005, he joined Lucient, the leading global company on the Microsoft
Data Platform, where he has been working as a trainer, consultant, and
mentor.

Francesco Milano has been working with Microsoft technologies since
2000.

Francesco specializes in the .NET Framework and SQL Server platform,
and he focuses primarily on back-end development, integration solutions,
relational model design, and implementation.

Since 2013 Francesco has also been exploring emerging trends and
technologies pertaining to the big data and advanced analytics world,

consolidating his knowledge of products like Azure HDInsight, Databricks,
Azure Data Factory, and Azure Synapse Analytics.

Francesco is a speaker at prominent Italian data platform conferences
and workshops.

In 2015, he joined Lucient, the leading global company on the Microsoft
Data Platform, where he has been working as a trainer, consultant, and
mentor.

Introduction

In this connected era, it is important to determine how and when your data
can be stored in the cloud. This book, both a reference and a tutorial, covers
the different approaches to storing information in the Microsoft Azure
environment. The book discusses and compares various storage options,
helping you make better choices based on each particular need, and guides
you through the steps to prepare, deploy, and secure the most appropriate
storage environment.

This book covers every major topic area found on the exam, but it does
not cover every exam question. Only the Microsoft exam team has access
to the exam questions, and Microsoft regularly adds new questions to the
exam, making it impossible to cover specific questions. You should
consider this book a supplement to your relevant real-world experience and
other study materials. If you encounter a topic in this book that you do not
feel completely comfortable with, use the “Need more review?” links you'll
find in the text to find more information and take the time to research and
study the topic. Great information is available on MSDN, on TechNet, and
in blogs and forums.

Organization of this book
This book is organized by the “Skills measured” list published for the exam.
The “Skills measured” list is available for each exam on the Microsoft
Learn website: http://aka.ms/examlist. Each chapter in this book
corresponds to a major topic area in the list, and the technical tasks in each
topic area determine a chapter’s organization. If an exam covers six major
topic areas, for example, the book will contain six chapters.

http://aka.ms/examlist

Preparing for the exam
Microsoft certification exams are a great way to build your résumé and let
the world know about your level of expertise. Certification exams validate
your on-the-job experience and product knowledge. Although there is no
substitute for on-the-job experience, preparation through study and hands-
on practice can help you prepare for the exam. This book is not designed to
teach you new skills.

We recommend that you augment your exam preparation plan by using a
combination of available study materials and courses. For example, you
might use the Exam Ref and another study guide for your ”at home”
preparation and take a Microsoft Official Curriculum course for the
classroom experience. Choose the combination that you think works best
for you. Learn more about available classroom training and find free online
courses and live events at http://microsoft.com/learn. Microsoft Official
Practice Tests are available for many exams at http://aka.ms/practicetests.

Note that this Exam Ref is based on publicly available information
about the exam and the authors’ experience. To safeguard the integrity of
the exam, authors do not have access to the live exam.

Microsoft certifications
Microsoft certifications distinguish you by proving your command of a
broad set of skills and experience with current Microsoft products and
technologies. The exams and corresponding certifications are developed to
validate your mastery of critical competencies as you design and develop,
or implement and support, solutions with Microsoft products and
technologies both on-premises and in the cloud. Certification brings a
variety of benefits to the individual and to employers and organizations.

More Info All Microsoft certifications

http://microsoft.com/learn
http://aka.ms/practicetests

For information about Microsoft certifications, including a full
list of available certifications, go to
http://www.microsoft.com/learn.

Check back often to see what is new!

Quick access to online references
Throughout this book are addresses to webpages that the author has
recommended you visit for more information. Some of these links can be
very long and painstaking to type, so we’ve shortened them for you to make
them easier to visit. We’ve also compiled them into a single list that readers
of the print edition can refer to while they read.

Download the list at
MicrosoftPressStore.com/ExamRefDP900AzureFundamentals/downloads.

The URLs are organized by chapter and heading. Every time you come
across a URL in the book, find the hyperlink in the list to go directly to the
webpage.

Errata, updates & book support
We’ve made every effort to ensure the accuracy of this book and its
companion content. You can access updates to this book—in the form of a
list of submitted errata and their related corrections—at:

MicrosoftPressStore.com/ExamRefDP900AzureFundamentals/errata
If you discover an error that is not already listed, please submit it to us

at the same page.
For additional book support and information, please visit

http://www.MicrosoftPressStore.com/Support.

http://www.microsoft.com/learn
http://microsoftpressstore.com/ExamRefDP900AzureFundamentals/downloads
http://microsoftpressstore.com/ExamRefDP900AzureFundamentals/errata
http://www.microsoftpressstore.com/Support

Please note that product support for Microsoft software and hardware is
not offered through the previous addresses. For help with Microsoft
software or hardware, go to http://support.microsoft.com.

Stay in touch
Let’s keep the conversation going! We’re on Twitter:
http://twitter.com/MicrosoftPress.

http://support.microsoft.com/
http://twitter.com/MicrosoftPress

Chapter 1

Describe core data concepts

Having a strong understanding of most common types of data workload is
crucial to the delivery of successful projects.

Every workload has its particular approach and established best
practices. Moreover, you have to choose carefully which engine best fits
your needs to avoid having to rebuild the project from scratch in the middle
of development or to avoid incurring unplanned costs and budget revisions.

In this chapter, we first compare various kinds of data workload to
understand key differences between them. Then, we introduce the core
concepts behind data analytics and visualization.

Skills covered in this chapter:
Skill 1.1: Describe types of core data workloads
Skill 1.2: Describe data analytics core concepts

Note Free test account

If you do not have an Azure account, you can follow this book’s
practices and exercises by getting a 12-months-free account at
https://azure.microsoft.com/en-us/free.

https://azure.microsoft.com/en-us/free

Skill 1.1: Describe types of core data
workloads
Nowadays, almost every business is a data business. From ingestion to
presentation, the ability to manage, transform, and enrich your data is an
essential part of customer satisfaction.

With the growth of the Internet of Things (IoT), connected devices have
become a tremendous source of data. Health care, just to name one, has
entered a golden age where even a watch can become a lifesaver thanks to
its ability to monitor and analyze heartbeat patterns. Social networks keep
producing huge volumes of data per second, and such data must be
analyzed both in real time, to outline trending topics, and in batch mode, to
discover historical trends.

These types of sources, in different or primitive forms, have existed for
a long time. What is new, in the last few years, is that the flexibility of
cloud platforms has enabled a wider architecture design, allowing
companies to build complex systems where all these sources coexist. Also,
the amount of data is growing at a very fast rate, posing new challenges for
storing and handling it. Terms like Lambda architecture, Kappa
architecture, speed layer, batch layer, serving layer, and many others have
become very popular, making it hard to choose one path over another.

For the sake of simplicity, we will refer to these complex scenarios with
a more general and conceptual term: the modern data warehouse, as shown
in Figure 1-1.

Figure 1-1 A typical modern data warehouse architecture

A modern data warehouse brings together structured, semi-structured,
and unstructured data, storing and analyzing the data at the right pace and
with the most appropriate engine or tool. It offers enterprise-level security
so that business and end users can access only the information they are
allowed to, through both curated data sets and ready-to-use analytical
reports.

In a modern data warehouse architecture, raw data is also kept in its
original format to provide data scientists with deep and accurate sources to
experiment with, introducing the possibility to enrich data with advanced
analytics techniques and letting the company benefit from them.

Usually, the storage layer takes the form of a data lake, a distributed and
highly scalable storage that supports out-of-the-box, heavy-throughput
workloads while providing limitless space and growth.

Three main types of workload can be found in a typical modern data
warehouse:

Streaming data
Batch data
Relational data

This list is not exhaustive since architecture may vary, but it will give
you a practical overview of how to handle these workloads and avoid
common pitfalls.

This skill covers how to:
Describe streaming data
Describe batch data
Describe the difference between batch and streaming data
Describe the characteristics of relational data

Describe streaming data
A data stream is a continuous flow of information, where continuous does
not necessarily means regular or constant.

A single chunk of raw information sent is an event (or message), and its
size is rarely more than a few kilobytes. With some exceptions, ordering of
events does matter, so stream engines must implement some sort of
reconciliation system to handle possible delays in the delivery.

Figure 1-2 gives an overview of a stream pipeline and some of the
technology involved.

Figure 1-2 Stream processing pipeline

Trying to simplify and schematize a data stream flow, you can identify
the following main phases:

Production Data is produced by various sources, which usually
include one or more types of devices such as (but not limited to)
mobile phones, sensors, flight recorders, wind turbines, production
lines, wearables, GPS, cameras, and software applications. These are
the producers.
Acquisition Produced data is pushed to one or multiple endpoints,
where a stream transport and/or processing engine is listening for
incoming data events. These events are made available to downstream
clients, which are the consumers. The acquisition phase and

consumers queries are often referred to as ingress and egress phases,
respectively.
Hundreds, thousands, or even millions of producers can send data
simultaneously and with very high frequency, making having a low-
latency and scalable engine (such as Azure Event Hubs, with or
without a Kafka interface, or Apache Kafka) listening mandatory on
this side. Events are usually kept for a configurable period of time and
at the disposal of the consumers, not necessarily one by one but in
small batches.

Aggregation and transformation Once acquired, data can be
aggregated or transformed. Aggregation is usually performed over
time, grouping events by windows. Tumbling, hopping, sliding, and
session windows are commonly used to identify specific rules for
aggregation (more on that in a bit). Data can also undergo some
transformation, such as filtering out unwanted values, enriching it by
joining it with static data sets or other streams, or passing it to a
machine learning service to be scored or a target of prediction.
Aggregated data is then stored or sent to a real-time-capable
dashboard tool, like Microsoft Power BI, to provide users with a
constantly fresh and insightful view of information flowing in.
Storage Acquired data, be it raw, aggregated, or both, is finally stored
for further analysis. Storage types may vary and depend on whether or
not aggregation has been performed. Raw data is usually sent to data
lake folders in compressed format or high-ingestion-throughput
NoSQL database services, like Azure Cosmos DB, whereas
aggregated data is most of the time stored in data lake folders in
compressed format or relational database services such as Azure SQL
Database or Azure Synapse Analytics.

Figure 1-3 shows a typical use case for streaming: road vehicle trips
analysis.

Figure 1-3 Stream processing overview

Need More Review? Azure Event Hubs and Apache Kafka

If you are new to streaming and want to know more about these
services, here’s a good starting point:
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-
for-kafka-ecosystem-overview.

 Exam Tip

Usually message ingestion engines do not keep events forever—they
delete them after a configurable retention period. Azure Event Hubs
has a feature called Event Hub Capture that you can use to off-load

https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-for-kafka-ecosystem-overview

incoming events to a cloud storage location as soon as they arrive, as
well as pass them down your stream pipeline. This feature is useful
when you need to run a batch processing job afterward or want to keep
events for historical reasons, saving the need to build an off-load
pipeline yourself. Events are serialized in Apache Avro, a compact and
binary serialization format that retains schema information.

Stream transport and processing engines are complex pieces of software.
They usually operate 24/7; hence, resiliency to failure is a key factor.
Moreover, they must scale quickly as soon as the volume of incoming data
increases, since losing events is not an option.

Later in this book, you will see in detail the Azure streaming engine
offerings. For now, suffice it to say that from a high-level point of view
they usually come as a classical Hadoop cluster, with a driver node for
coordination and a variable number of executor nodes that do the physical
work. If you choose to use platform-as-a-service (PaaS) services, this
architecture will likely be transparent to you.

 Exam Tip

One of the most important metrics to check the wealth of your pipeline is
the input rate versus the processing rate (InputRate/ProcessingRate)
coefficient. It shows how effective your pipeline is in ingesting and
transforming data as soon as it arrives. If you have a high value for this
ratio, it means that either

Your processing engine is too much under pressure and needs to
scale.
You are doing too many or too complex transformations to your
incoming messages.

Data streams share some concepts that are important to understand,
considering that they are unique to these workloads and not so common in
other processes:

Watermarks
Consumer groups
Time window aggregations

Every engine has its own implementation of these concepts, but let’s
focus on the role they have and why they are essential.

Watermarks
In such complex systems with so many actors communicating at the same
time, it is almost impossible to have no failure or disruption. Be it a
network error, a producer losing signal, or a cluster node crashing down,
events must be delivered and kept in order.

Watermarking is a technique used by stream processing engines to deal
with late-arriving events. A watermark is basically a threshold; when a
message is sent, if the difference between arrival time and production time
is beyond that value, the message is discarded from the output and not sent
to the consumer.

Consumer groups
Consumer groups allow consumers to maintain dedicated and isolated
views over the data stream. The source stream is unique—each group can
read data at its own pace and starting from its own offset. For example, you
may have a real-time dashboard that reads data every 5 seconds and an
hourly job that performs historical aggregations over ingress events; both
are reading the same stream, but the former will read events minutes before
the latter.

Time window aggregations
To better understand the logic behind time windows aggregations, shown in
Figure 1-4, let us take a closer look at four types you may need to apply in

your processing pipeline. These are the ones, for example, available in the
Microsoft PaaS stream processing engine, Azure Stream Analytics.

Figure 1-4 A stream window aggregation

Tumbling window
A tumbling window (see Figure 1-5) is a fixed-size segment of time that
repeats and does not overlap with its predecessor. Events can belong to just
one window, and if no events occur in a specific time window, the window
will be empty.

Figure 1-5 Tumbling window example

One of the most typical uses of tumbling windows is aggregating data
for reporting purposes, such as counting the number of financial
transactions that occurred in the last hour and storing the result.

Hopping window
A hopping window (see Figure 1-6) has two parameters: hop size and
window size. The former indicates how much the window must hop
forward in time, whereas the latter indicates how many seconds it has to go
back in time to collect events. Windows can overlap, they can be empty,
and events can belong to multiple windows.

Figure 1-6 Hopping window example

You can think of a hopping window as a tumbling window that can
overlap, and when hop size and window size have the same value, your
hopping window behaves exactly as a tumbling window.

A typical use of a hopping window is moving average computation over
the incoming data.

Sliding window
Like a tumbling window, a sliding window (see Figure 1-7) moves forward
in time in fixed intervals and by a specific number of seconds. However, it

will not produce any output if no new events occurred.

Figure 1-7 Sliding window example

Windows can overlap, they cannot be empty, and events can belong to
multiple windows.

As with hopping windows, use is often related to moving average
computation. The difference is that, although hopping windows are
computed at fixed intervals, sliding windows adjust their frequency with
the density of incoming messages, producing more accurate results when
events are very close.

Session window
A session window has three parameters: timeout, maximum duration, and
partition key. The first two are mandatory and the third is optional.

Figure 1-8 shows a 5-minute timeout, 20-minutes-maximum duration
session window behavior:

When the first event arrives, a new window is created.
A second event comes before 5 minutes have passed, and since the
window is still waiting for new messages, it is extended and timeout is
reset.
The engine waits another 5 minutes and, since no new messages show,
the window is considered closed; sum aggregate value for this
particular window would be 6 (1 + 5).

Figure 1-8 Session window example

Generally speaking, when an event occurs, a new window is created. If
no events arrive within the specified timeout, that window is closed;
otherwise, it extends and keeps waiting for other events flowing in. If it
reaches its timeout value, or extends to its maximum duration, that window
is closed. Maximum duration is never reached in Figure 1-8, since in that
case timeout always occurs before it.

If a partition key has been specified, it acts as a boundary and the same
process applies to every partition value, without interfering with one
another.

Windows cannot overlap, they cannot be empty, and events cannot
belong to multiple windows.

Session windows are useful when you want to analyze together events
that may be related, such as user interactions within a website or an app

(visited pages, clicked banners, and so on).

Need More Review? Microsoft Learn: Implement a data
streaming solution with Azure Streaming Analytics

Though primarily focused on Azure Stream Analytics itself, the
following Microsoft Learn path gives a good overview of
streaming processing techniques: https://docs.microsoft.com/en-
us/learn/paths/implement-data-streaming-with-asa/.

Describe batch data
Whereas streaming is a very dynamic workload, batch processing focuses
on moving and transforming data at rest. If you’ve ever implemented a
business intelligence (BI) system, in all likelihood you have dealt with this
particular workload at least once.

The following is a non-exhaustive list of where batch processing may
take place:

Data sets transformation and preparation
Extract, transform, and load (ETL) workloads
Extract, load, and transform (ELT) workloads
Machine learning models training
Applying machine learning models on data sets for scoring
Report generation

Figure 1-9 shows a typical batch workflow:

1. Source data is ingested into a data storage of choice, such as Azure
Blob Storage, Azure Data Lake Storage, Azure SQL Database, or
Azure Cosmos DB.

https://docs.microsoft.com/en-us/learn/paths/implement-data-streaming-with-asa/

2. Data is then processed by a batch-capable engine, such as Azure
Data Lake Analytics, Azure HDInsight, or Azure Databricks, using
languages like U-SQL, Apache Hive or Apache Pig, or Spark.

3. Finally, data is stored in an analytical data store, such as Azure
Synapse Analytics, Spark SQL (mostly with Delta Lake; more on
that in Chapter 4, “Describe an Analytics Workload on Azure”),
HBase, or Hive to serve business reporting.

Figure 1-9 Batch processing overview

Need More Review? Batch technology choice

Chapters 3 and 4 go into more detail about these services and the
process itself.

Also, for guidance about differences between these engines, go
to: https://docs.microsoft.com/en-us/azure/architecture/data-
guide/technology-choices/batch-processing.

You can use either Azure Data Factory or Apache Oozie on Azure
HDInsight to orchestrate the whole process.

 Exam Tip

Both Azure Synapse Analytics—through its recent additions, currently
in public or private preview—and Azure Databricks aim to be unified
platforms for ingestion, processing, storing, and serving of batch and
stream workloads.

A batch job is a pipeline of one or more batches. Those batches could be
serial, parallel, or a mix of both, with complex precedence constraints.

Batch jobs are usually triggered by some recurring schedule or in
response to particular events, such as a new file placed in a monitored
folder. They mostly run off-peak to avoid incurring resource contention in
production systems. In fact, the volume of data to be processed could be
huge, particularly if you are in scenarios falling under the (often abused)
term big data.

Since there is no clear definition for big data, such environments are
generally described through the so-called 3 V’s of big data. In extended
versions, you could find one or two more V’s. We refer to this version for a
comprehensive overview:

Volume
Velocity

https://docs.microsoft.com/en-us/azure/architecture/data-guide/technology-choices/batch-processing

Variety
Veracity
Value

These traits have a lot in common with challenges you face in batch data
workloads, so they give us a hook to better understand these as well.

Volume
When someone asks a colleague of mine, “What is big data, really?” his
typical reply is, “Everything that does not fit in an Excel sheet!”

Jokes aside, of all the 5 V’s, volume is probably the trickiest to define.
When volume increases, it can cause unexpected results in your batch jobs,
and not only there. A one-hour job can turn into a never-ending job without
any apparent reason, but this alone does not mean that it is time to buy
more hardware or to change the engine completely. Solid architectures, best
practices, and well-written codebases can overcome most of the problems
related to data volume, so you may find that classic relational engines like
SQL Server can handle even terabytes of data without hassle.

That said, there is a limit beyond which traditional symmetric
multiprocessing (SMP) systems cannot go. In these systems, such as a
traditional physical server or a virtual machine (VM), resources like
memory or disk access channels (to name a few) are shared between
processors. So, although scaling up could help, at some point you hit a wall
when, for example, you reach the I/O or RAM throughput limit.

Massively parallel processing (MPP) architectures like Azure Synapse
Analytics (see Figure 1-10) and Hadoop ecosystems introduced a clear
separation between computation and storage, allowing them to scale
independently. They share the same scale-out approach, with some
differences in the implementation, but the resulting factor is good flexibility
in both scenarios.

Figure 1-10 Azure Synapse Analytics (formerly Azure SQL Data
Warehouse) architecture overview

The underlying architecture, similar in both scenarios, is usually
composed of a header node, which orchestrates multiple worker nodes,
dividing a single batch job into pieces and assigning them to each worker.
Data is stored in a distributed file system, which is itself composed of one
or more nodes. On these nodes resides the data, and it is also split in
chunks. The cluster topography drives the choice of how many pieces the

job has to be split into, and network proximity between workers and storage
determines what data is handled by which worker.

When the volume grows, it is easier to add nodes where needed, usually
increasing the number of workers to parallelize more. In such a way, you
can maintain the amount of data every worker has to handle, making the
workload more predictable.

Many systems also implement an auto-scaling feature, adding nodes
when needed and removing them when they are not necessary anymore.
This feature is helpful when the volume of data is not constant and you
want to keep costs as low as possible.

Whatever approach you follow, a key term in high-volume scenarios is
data virtualization. The concept behind it is that making data accessible
where it is stored, without the need to move it to a central repository, saves
a lot of resources and enables a sort of on-demand data analysis.

Microsoft SQL Server 2016 introduces and seamlessly integrates in its
T-SQL query language PolyBase, an engine capable of querying data from
external data sources. PolyBase is fully integrated in Azure SQL Databases
as well, and in its more recent version included in SQL Server 2019, the
compatibility with external sources has been greatly increased, adding an
Open Database Connectivity (ODBC) connector.

Velocity
The term velocity mostly refers to real-time or near-real-time scenarios
where data has to flow quickly down the pipeline, undergoing some
enrichment or transformation in the process. Although velocity is closely
related to streaming workloads, it usually has a side effect on batch
workloads as well.

In modern data warehouse scenarios, such data is often stored for further
analysis, becoming one of the sources of batch jobs. In this scenario, the
two different paths data follows are the speed layer and the batch layer, as
shown in Figure 1-11.

Figure 1-11 Speed layer versus batch layer

Variety
Handling different types of data has always been a major problem in batch
scenarios, since it means you may need to do a lot of work to harmonize all
of them in a meaningful way.

Having different formats could also mean you would have to use
specific engines to read particular file types, increasing the overall
architecture complexity.

Also, data is often volatile; its schema could change over time, and you
may have to handle slight differences between old and new data even if it is
coming from the same source. In such cases, we speak of schema drift.

To better understand what you may have to handle, we use the most
traditional classification for data structures:

Structured data This data is usually well organized and easy to
understand. Data stored in relational databases is an example, where
table rows and columns represent entities and their attributes. Data

integrity is also enforced through checks and constraints, making it
unlikely that you get malformed or orphaned data.
Though you may have to work with many different relational database
engines, vendor-specific drivers are usually available that are very
mature in their implementation, leaving you with just the need to
understand the data model and how to query it in the most performant
way.

Semi-structured data This data usually does not come from
relational stores, since even if it could have some sort of internal
organization, it is not mandatory.
Good examples are XML and JSON files. In these formats, you have a
sort of schema, but adhering to it is up to the production system. Some
entities contained in this type of structure may have additional
attributes or may lack some others, so flexibility must be a key trait of
engines capable of handling these types of data.

In these cases, we typically speak of schema-on-read, meaning that
schema must be enforced by reading applications. Some attributes, or
even entire subtrees of children entities, may be required from an
application reading that data but not from another. Listing 1-1 shows a
sample JSON file; you can see both top-level objects and their related
children are represented in the same file in an object-oriented way,
using different nesting levels.

NoSQL databases like Azure CosmosDB work natively with JSON
data and have very low ingestion latency. Moreover, they support
indexes to make querying and retrieval of entities very performant, at
the cost of a slightly reduced ingestion rate. Also, many relational
engines handle semi-structured data to some extent. Microsoft SQL
Server 2005, for example, introduced the XML data type, and more
recently, Microsoft SQL Server 2016 added JSON support. The aim of
such extensions is to provide a common place to manage structured
and unstructured data for less complex scenarios, avoiding the need to
introduce new engines to handle them.

The aforementioned PolyBase does a great job of allowing SQL
Server databases to handle different sources and formats, giving us
another option to mix structured and unstructured data in the same
process.

Listing 1-1 Sample JSON content
Click here to view code image
{
 "Description": "This file contains an array of reviewers with
basic personal info
and a nested array of made reviews",
 "Values": [
 {
 "FirstName": "Park",
 "LastName": "Dan",
 "Age": "43",
 "Reviews": [
 {
 "Company": "The Phone Company"
 "Rating": 4.0
 },
 {
 "Company": "Northwind Electric Cars"
 "Rating": 3.7
 }
]
 },
 {
 "FirstName": "Kelly",
 "MiddleName": "Jane",
 "LastName": "Weadock",
 "Age": "27",
 "Reviews": [
 {
 "Company": "Northwind Electric Cars"
 "Rating": 3.7
 }
]
 }
]
 }

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch01_images.xhtml#p01lis01a

Unstructured data Going down the list, you find unstructured data as
the last step. Data with no explicit data model falls in this category.
Good examples include binary file formats (such as PDF, Microsoft
Word, MP3, and MP4), emails, and tweets.
Usually, a process involving machine learning prediction capabilities
is used to extract useful information from these files. These processes
go under the name of information retrieval. Sentiment analysis, for
example, tries to contextualize a text in order to understand the topic it
is about, identifying in the meantime what feeling the author has in
that regard. Form recognition instead tries to extrapolate key-value
pairs from a document, returning a table of the values as output. Image
classification tries to understand the subject of a photograph,
comparing it with a library of tagged images. These are just some
types of processing, but it is important to keep in mind that applied AI
is becoming very popular and its fields of use are many. Offerings like
Azure Cognitive Services make it possible to integrate AI in your
pipelines with just API calls, saving the burden of building a complex
platform yourself.

Data may come with a metadata layer along with its binary content,
such as image attributes and email fields, and in such cases it is a mix
of semi-structured and unstructured data.

Veracity
In almost every organization, veracity sounds like a warning. Having a lot
of data coming from different sources poses a big challenge for ensuring
that data quality is acceptable. Information technology has always dealt
with the concept of garbage-in, garbage-out (GIGO): computers elaborate
an input to produce an output, but they cannot identify bias if not taught to
do so.

Data should be curated in every phase of its lifecycle, but in real-world
scenarios it is very hard to implement such level of control. Moreover, you
can have situations where sources have eventually good quality by
themselves, but when put together you need to do complex work to make
them speak the same language.

Having an output you do not trust makes the whole process a failure,
and this leads straight to the last V.

 Exam Tip

Data quality is a complex topic, and it is not covered in this book.
However, it is important to know which services can be used to check
and cleanse your data.

On-premises, Microsoft SQL Server Enterprise Edition includes
Master Data Services and Data Quality Services suites. First
introduced in 2008 version, both services found their maturity in 2016
version. You’ll find more details here:

Master Data Services https://docs.microsoft.com/en-us/sql/master-
data-services/master-data-services-overview-mds?view=sql-server-
ver15&viewFallbackFrom=sql-server-previousversions
Data Quality Services https://docs.microsoft.com/en-us/sql/data-
quality-services/data-quality-services?view=sql-server-ver15

Also, SQL Server Integration Services (SSIS) Enterprise Edition, since
its 2005 version, offers out-of-the-box Fuzzy Lookup and Fuzzy
Grouping components, which you can use within a data flow to de-
duplicate input records or to perform data quality checks. You’ll find
in-depth information here: https://docs.microsoft.com/en-us/previous-
versions/sql/sql-server-2005/administrator/ms345128(v=sql.90)?
redirectedfrom=MSDN.

With Azure, you have the following options:

If you are using infrastructure as a service (IaaS; see Chapter 2,
“Describe How to Work with Relational Data on Azure”), a SQL
Server VM can host Master Data Services, Data Quality Services, and
Integration Services; there are no major differences with on-premises
here.

https://docs.microsoft.com/en-us/sql/master-data-services/master-data-services-overview-mds?view=sql-server-ver15&viewFallbackFrom=sql-server-previousversions
https://docs.microsoft.com/en-us/sql/data-quality-services/data-quality-services?view=sql-server-ver15
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2005/administrator/ms345128(v=sql.90)?redirectedfrom=MSDN

If you use Azure Data Factory, you can leverage soundex or regular
expression (regex)-based expression functions like regexMatch,
regexExtract, rlike, inside mapping data flows to perform de-
duplication based on string similarity, or you can still use an on-
demand Integration Services environment using SSIS Integration
Runtime Enterprise Edition (see Chapter 4 for an overview of Azure
Data Factory [ADF] Integration Runtimes) to perform fuzzy logic
inside SSIS packages. You’ll find more info here:
https://docs.microsoft.com/en-us/azure/data-factory/data-flow-
expression-functions.
If you want to opt for a third-party solution, Azure Marketplace offers
a lot of apps you can deploy on your Azure subscription. You can
browse them here: https://azuremarketplace.microsoft.com/en-
us/marketplace/apps.
Related to data governance in general, Azure Data Catalog is a fully
managed cloud service that helps users inside an organization to
discover, understand, and consume available data sources. Any user
can collaborate, adding metadata and annotations to information assets
registered in the catalog. You’ll find more info here:
https://docs.microsoft.com/en-us/azure/data-catalog/overview.

Value
Every process must focus on extracting value from data, and this is true
from the design phase to the production environment. Data with no value is
just a cost, whereas gathering insights from it brings benefits to all
businesses.

Having a lot of data at your disposal does not necessarily mean that it is
easier to find value in it; in fact, it is usually quite the opposite. You have to
pick the right and most useful data out of thousands of different files or
tables, trying to avoid losing precious time digging through out-of-scope
content.

After you identify the best data model that suits your business demands,
you have to build pipelines able to transform data the target model needs.

https://docs.microsoft.com/en-us/azure/data-factory/data-flow-expression-functions
https://azuremarketplace.microsoft.com/en-us/marketplace/apps
https://docs.microsoft.com/en-us/azure/data-catalog/overview

Visualization plays another key role in giving value to your data.
Choosing the best tool and the right visuals is necessary to make users
comfortable with the results and to give them the flexibility to play with the
data at their own pace.

The batch data approach
Extracting value from a data lake is not an easy task. Volume and variety of
data may pose a big challenge in understanding if you have the right content
to answer the business questions and whether the content is good quality or
needs polishing.

Usually the first step involves exploring the data at your disposal. Data
discovery tools can help in early phases, allowing you to quickly explore
data contents without the need to build transformation pipelines. After you
identify data that meets your business needs, you can start digging to
determine whether the data is clean or it needs to (and can) be cleansed.
Missing attributes or values, schema drifting, and duplicates are just some
of the problems you have to look for. A few tools or engines you can use to
perform data discovery are Power BI, Azure Data Studio, Spark, Hive, and
Azure Synapse Studio (in public preview as of this writing).

After you know your data better, you can choose an engine that meets
the needs of transformations you may have to make and that will serve as
your final storage. If your transformation and storage engines coincide, you
are probably going for an extract-load-transform (ELT) pattern; otherwise,
you will opt for a more traditional extract-transform-load (ETL) pattern.
We’ll present a deep overview of these patterns in the next section.
Selecting the right engine could be nontrivial, but generally speaking key
factors that drive the choice are as follows:

Platform maturity
Out-of-the-box file format support and data sources integration
Ease of development
Level of confidence in your team on a particular engine
Ease of maintenance
Cost

Whatever path you choose to follow in your batch process, usually the
final home for your curated data is a database, typically a data warehouse.
We’ll focus more on data warehouses later in this chapter, but for now keep
in mind that this particular modeling technique, when properly architected,
allows for performant analytical queries even with a huge amount of data.

At the end of the pipeline are the business users, who submit queries to
your data model to get insights from it. This can be done in a self-service
fashion, where users ask for access to more granular data in order to further
transform it with tools like Power BI, or through a report, for example, in a
more traditional and preconstructed way.

Between the data model and business users, a serving layer may exist.
This layer is composed of a pre-aggregated data set, called a data mart, and
may contain an online analytical processing (OLAP) semantical model such
as SQL Server Analysis Services. The purpose of this layer is to decouple
raw data and analytics to improve query performance on the user side and,
at the same time, protect the relational engine from unpredictable load
spikes due to direct interaction with user requests.

Need More Review? Microsoft Learn: Azure for the data
engineer

The following Microsoft Learn Path explores tasks and
challenges related to data engineering on Azure, and it gives an
overview of some products that may help in such scenarios:
https://docs.microsoft.com/en-us/learn/paths/azure-for-the-data-
engineer/.

Describe the difference between batch and
streaming data

https://docs.microsoft.com/en-us/learn/paths/azure-for-the-data-engineer/

Batch and streaming data have major differences in many aspects, and the
previous sections try to highlight key traits and challenges of both
processing techniques.

It may be helpful to summarize some of the concepts expressed in a
tabular form for reference. Values contained in Table 1-1 represent the most
common scenario for each process type.

Table 1-1 Batch vs. streaming

 Stream processing Batch processing

Input volume Small batches Large batches

Output
volume

Small batches Small batches Large batches
Structured data

Input type Very dynamic Almost static

Concurrency Very high Very low

Transformati
ons

Window aggregations Complex transformations

Latency Very low High

Type of job Fast-running Long-running

Uptime Always running Scheduled runs

Memory
consumption

Low Very high

Message
ingestion

Azure Event Hubs
Apache Kafka
HDInsight with Kafka

N/A

 Stream processing Batch processing

Processing
engines

Azure Stream Analytics
Azure Databricks with
Spark Streaming
HDInsight with Spark
Streaming or Storm

Azure Data Factory with
Mapping Data Flows
Azure Data Factory with
Wrangling Data Flows
Azure Synapse Analytics
Azure Data Lake Analytics
Azure Databricks
HDInsight with Hive, Spark,
or MapReduce

Describe the characteristics of relational data
You have to go back to the year 1969 to find the roots of the so-called
relational model. At that time, English computer scientist Edgar F. Codd
began to outline a logical and mathematical approach to data management,
based on first-order predicate logic.

In 1970, his research paper “A Relational Model of Data for Large
Shared Data Banks” gave birth to data management as we know it today
and coined the term relational model.

In the following years, other publications extended and consolidated the
theory, while also proposing new concepts such as three-valued logic to
handle missing information.

Other notable external contributions to the work of Codd are the
extensive publications by Christopher J. Date and Hugh Darwen.

A bit of theory
Describing in detail the relational model is beyond the scope of this book,
but we’ll briefly introduce its core aspects. These concepts are the
foundation of the majority of modern relational database management
systems (RDBMSs) you probably use every day, though their practical
implementation often deviates from the original paradigm.

The theory that describes the relational model states that data can be
expressed as relations (or tables), which are sets of tuples (or rows). By
definition, sets are unordered and do not allow for duplicates.

With a little difference from their mathematical counterpart, relational
tuples contain labeled and unordered elements called attributes (or
columns). A domain (or data type) is the type of values an attribute accepts,
and you can even restrict possible values inside a domain through a
constraint. Figure 1-12 shows a practical representation of a relation.

To be uniquely identified within a relation, tuples can specify one or
more attributes as their primary key. A connection between two relations is
called a relationship.

Figure 1-12 Relation, tuples, and attributes

Data is retrieved by issuing queries to the model, using relational
algebra and relational operators. Queries use a declarative language,

describing what we want to do/get and not how to do/get it, and the output
is a relation itself.

Structured Query Language (SQL), along with its vendor-specific
variants, is a popular programming language for querying data stored in
RDBMSs. SQL has been an ANSI standard since 1986 and an ISO standard
since 1987. Microsoft-specific implementation uses the name Transact
Structured Query Language (T-SQL), and it is the language used to interact
with Microsoft SQL Server.

Here are the eight original SQL operators, followed by the
corresponding T-SQL operator, in parentheses:

Union (UNION)
Intersection (INTERSECT)
Difference (EXCEPT)
Cartesian product (CROSS JOIN)
Selection (WHERE)
Projection (SELECT)
Join (INNER JOIN)
Relational Division (not implemented)

The practice
Many database products base their implementation on the relational model,
but none of the most popular enterprise engines embrace the full theory as
defined by Codd. Vendors usually opt for implementing a subset of the
original rules, extending them with custom ones to add particular features.

Microsoft SQL Server makes no exception. It is the Microsoft-specific
implementation of the relational model, and its wide ecosystem includes
many additional services, covering data management and transformation
tasks, among others. The SQL Server implementation of the SQL language
is called Transact-SQL (T-SQL), and though it does not implement the full
SQL standard, T-SQL extends it in many ways.

Naming conventions used in SQL Server are consistent across all its
various versions and implementations, so we will use them from now on.
Relations are tables, tuples are rows, attributes are columns, and domains
are data types.

Database architecture usually depends on what type of workload it is
designed for. We can identify two core workloads:

Online transaction processing (OLTP)
Online analytical processing (OLAP)

Need More Review? OLTP and OLAP

You have a breakdown of these two workloads in Skill 2.1 in this
book.

Skill 1.2: Describe data analytics core
concepts
Data analytics is a broad concept that embraces many stages of the data
lifecycle. Before data can be visualized and analyzed by users, the
information has to be collected, cleansed, transformed, and prepared.

Users must trust the data at their disposal, and posing the same question
in different ways or with different tools must lead to the same answer. For
this reason, data warehouses and their single source of truth are still
relevant today, though in a more complex and enterprise-wise form.

This skillx covers how to:
Describe analytics techniques

Describe the concepts of ETL, ELT, and data processing
Describe data visualization and basic chart types

Describe analytics techniques
When an organization wants to extract value from its data, the first step is to
understand what its analytics maturity is. Another word for this is the
analytics curve (see Figure 1-13), which features four types of analysis:

Figure 1-13 The analytics curve

Descriptive analysis This type answers the question “What
happened?” Data is collected from various sources and is well
organized in a central repository, usually a data warehouse. This
process makes it easier to analyze metrics (facts) from different points
of view (dimensions) by querying the model directly or through a
more advanced semantic model such as OLAP cubes. Historical data
enables users to see how metrics changed over time. With this type of
analysis, any outlook for the future or explanation of past facts has to
be done manually, possibly introducing human bias to the result. This
is the first step for an organization that wants to get the most out of its
data, and it is also the easiest one since it relies on well-known
business intelligence architectures and practices.
Diagnostic analysis This type answers the question “Why did it
happen?” Data is analyzed with machine learning algorithms that
perform root cause analysis, which aims to find anomalies and
outstanding patterns that have led to unwanted outputs. Although
subject matter experts (SMEs) define accepted ranges of values along
all the process steps, analysis is usually done in an automatic way
using models trained and tuned by data scientists. We recommend that
you store the data in a central repository such as a data warehouse. As
you see in Figure 1-13, this step is the first one to fall under the
Analytics field, and it brings a bit more complexity to the picture.
Predictive analysis This type answers the question “What will
happen?” More advanced techniques are applied to achieve this step.
The aim here is to foresee the future, analyzing actual and historical
trends to predict in advance what the output will be. This enables
organizations to make ongoing adjustments to current processes or
take preemptive actions to prevent something from happening. Here
are a few examples:

Predictive maintenance When considering whether a particular
device might break, take into account operational parameters and
past failures of other devices of the same type.
Customer churn When a customer might switch to a competitor,
consider similar behaviors of past customers.
Fraud detection Ask yourself whether current activity patterns, like
credit card transactions, web requests, or insurance claims, suggest

suspicious behaviors.
Depending on the type of answer you are searching for, predictive
analysis could be performed in both a streaming and a batch fashion.
That aspect, along with the nontrivial tuning of such models to avoid
incorrect predictions, increases the overall complexity of this type of
analysis.

Prescriptive analysis This type answers the question “How can we
make it happen?” The goal here is to set a target and find the best
combination of input parameters to reach it. For example, suppose you
plan for a 20 percent revenue increase for the next fiscal year, and you
want to know what you should change in your process to reach that
target. Prescriptive analysis is part of a process that heavily involves
predictive analysis, and it is not uncommon to see them implemented
together.

It is important to understand that most advanced analytics techniques
benefit from having extensive and curated input data, because this makes
their output more reliable. Another important factor is that a well-
developed and tuned model has no biases, and it may uncover correlations
between input attributes (usually called features) that were unknown
before. Also, it may identify patterns that do not depend on (or not only on)
a particular attribute a human would consider a good candidate based on
their business knowledge.

Advanced analytics or the data science process may quickly become
complex, since it involves a lot of resources and it is a time-consuming
activity. Figure 1-14 shows one of the most common methodologies used to
approach a data science lifecycle, the Team Data Science Process (TDSP).

Figure 1-14 The Team Data Science Process

TDSP is an agile approach to data science projects and usually involves
several different roles. The most common ones are:

Subject matter experts
Data engineer
Data scientist
Application developer

TDSP consists of four iterative phases, with bidirectional
interconnections between most of them:

1. Business needs First, you need to understand what the business
needs are. Different questions lead to exploration of different data
sources and usually to a different algorithm choice.

2. Data discovery and acquisition Second, you have to gather and
analyze data at your disposal to make sure you have all the
necessary information. See the section “Describe Batch Data”
earlier in this chapter for more details about this topic.

3. Model development Third is the actual model development, where
the value added from data scientists comes into play. You can
identify three sub-phases here:

A. Feature engineering This sub-phase consists of studying the
input data, cleansing it, selecting or discarding attributes, and
creating a data set the model can understand.

B. Model training The model now has to learn from the data. The
input data set is usually randomly split into two parts: the train
and the test data set. The former is used to train the chosen
model, whereas the latter is used to test the model’s prediction
performance.

C. Model evaluation The model is finally scored to check
whether it has a good fit over the data, and it has to adapt in a
consistent way to variations in input data. Technically
speaking, it has to avoid overfitting and underfitting. If the
result is not good, the model development phase iterates again
until the model meets expectations. At this phase, other
models are explored to see if they perform better than the
previously chosen one.

4. Model deployment Fourth, the model is finally deployed in
production. Production environments may vary, but usually the
choice is based on which type of interaction is required. When the
model is part of a pipeline that requires real-time interaction, a web
service deployment is preferred. When a batch process has to use
the model prediction capabilities over a large data set, the model
can be serialized on disk after training and deserialized at runtime
when needed. Whichever option you choose, an important part of
this phase is the ability to regularly monitor the performance of the
deployed model. Drift in the original data, or constant little changes
over time, may lead even a solid model to bad performance.

This process is not final, and many iterations could be needed before
presenting the results to your customer.

 Exam Tip

A popular term to describe the machine learning lifecycle is MLOps,
which stands for machine learning operations. It derives from and
completes the well-established DevOps ecosystem, encompassing all
those practices, tools, and methodologies that make the process agile
and robust. A fully automated MLOps pipeline is able to test, accept,
and deploy in a production environment without downtime, even for a
small change in the source code committed by a developer.

Modern tools and services (especially on Azure) do a great job of
making the process easier to implement. Here are a few of the most relevant
ones:

AutoML Automated machine learning (AutoML) provides a way to
produce the best model over an input data set without any data
scientist interaction. Steps like features engineering, algorithm
selection, tuning, training, and scoring can become completely
transparent to the developer, making machine learning very accessible
even to someone who is not an expert in the field. AutoML has been
recently integrated in Power BI Premium and Power BI Embedded,
dramatically extending the capabilities of the tools to support not only
data discovery, transformation, and visualization, but also more
advanced steps related to the machine learning lifecycle.
MLFlow An open source platform for the machine learning lifecycle,
MLFlow allows for a centralized experimentation, reproducibility, and
deployment experience. Also, it offers a model registry that acts as a
repository, which enables users to quickly discover, annotate, and
manage models.

Azure ML Azure Machine Learning is a PaaS service that covers
most aspects of the TDSP. It provides a collaborative, scalable,
enterprise-grade ecosystem to build, train, deploy, and monitor your
machine learning models. Models can be developed through code
(Python, R) or by using an intuitive drag-and-drop UI (shown in
Figure 1-15). AutoML capabilities and MLFlow are fully integrated.
Once deployed, models can be exposed as scalable web services and
consumed by applications through API calls, making Azure ML a
good choice also for real-time scenarios.

Figure 1-15 Azure ML Designer (currently in public preview)

Azure Kubernetes Service Azure Kubernetes Service (AKS) is a
PaaS service hosted on Azure that facilitates management and
monitoring of containerized applications. If you are new to this
concept, think of a container as a self-sufficient application
environment (a pod in AKS) that can be replicated to scale out. AKS
is a common platform for ML models, since most developing
frameworks support it natively as a target when a model is ready for
production and has to be deployed.
SQL Server in-engine prediction Starting with SQL Server 2017,
and currently available in Azure SQL Database, Azure SQL Managed
Instance, and Azure Synapse Analytics (in preview as of this writing),
T-SQL supports the new PREDICT function, shown in Listing 1-2. It
offers a good way to predict directly where data resides, using a
pretrained and serialized model as a source. Obviously, it cannot scale
as well as a deployment on Azure ML or AKS, but it can simplify
your data pipelines in scenarios where scaling is not needed.

Listing 1-2 T-SQL PREDICT function
Click here to view code image
// Reading the pre-registered and serialized model
DECLARE @model varbinary(max) = (
 SELECT
 mls.native_model_object
 FROM
 dbo.mymodels AS mls
 WHERE
 mls.model_name = 'mymodel'
 AND
 mls.model_version = 'v1'
);
// Making the actual prediction
SELECT
 d.*,
 p.Score
FROM
 PREDICT (
 MODEL = @model,
 DATA = dbo.mytable AS d
) WITH (Score float) AS p;

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch01_images.xhtml#p01lis02a

 Exam Tip

ONNX, which stands for Open Neural Network Exchange, is an open
format built to represent machine learning models. It has quickly
become a standard in the industry, and it is widely integrated in many
frameworks.

To learn more, visit https://onnx.ai/.

Describe the concepts of ETL, ELT, and data
processing
Before data can be analyzed, it has to be collected and combined in a
meaningful way. The problem is, gathering data from different sources
always poses a tough challenge.

Data pipelines can quickly become complex, and engines that enable
these types of processes must be efficient and flexible, and they have to
come with performant connectors out of the box. Also, they must be
extensible since custom connectors may be needed for particular or
proprietary sources.

Usual sources and destinations may include the following:
Relational databases
NoSQL databases
Text files (like CSV, TSV, JSON, XML)
Binary files (like Microsoft Excel)
Web or application services

Data transformations may vary, but here are some of the most common
ones:

Filter

https://onnx.ai/

Join
Union
Sort
Group by
Add or remove columns
Data type change

The two main kinds of workloads are extract-transform-load (ETL) and
extract-load-transform (ELT). Choosing between them depends on how
much data you are going to move and transform, what engines you can use,
and which environment you are working in—on-premises, cloud, or hybrid.

ETL
ETL is a traditional approach and has established best practices. It is more
commonly found in on-premises environments since it was around before
cloud platforms. It is a process that involves a lot of data movement, which
is something you want to avoid on the cloud if possible due to its resource-
intensive nature.
Many business intelligence (BI) projects adopt this workload for their data
pipelines. The three phases (see Figure 1-16) are as follows:

Figure 1-16 ETL workflow

Extract Data is collected from sources and stored in a location
(possibly) next to the transformation engine. Usually, this phase aims
to decouple sources from the actual process as quickly as possible.
Work to perform on data can be time- and resource-consuming, and
having long transactions running while the connection with the
sources is still open could potentially lock the source system
completely. Moreover, consuming data over the network instead of
accessing it locally can slow down the transformation process
unpredictably or, in the worst case, jam it completely. Last but not
least, you must ensure consistency of the source data. If you are
reading from an application database, for example, chances are that
records change in the meantime, introducing inconsistencies between
tables records. For this reason, technologies like database snapshots or
replicas are widely used in the extract phase.
Transform Once extracted, data goes through one or multiple
transformation steps. This is where business rules are enforced and
most of the intelligence actually takes place. It is probably the most
important phase of the entire process and the one in which the data is
prepared for its destination, performing cleanup and check procedures

to prevent dirty, partial, or inconsistent data from reaching the
designated storage. Data that fails a quality or consistency check
should be reported back to its source for a fix and sent on to someone
in charge of keeping track of the issue. Also, it is not uncommon that
when even just one of the checks fails, the batch job fails too. This
phase is usually referred to as the staging phase. It is often beneficial
to follow a divide-and-conquer approach, splitting complex
transformation into smaller stages to keep performance more
predictable. When multiple steps are necessary, partial transformed
output is stored in staging tables. The last step usually shapes the data
to easily fit the target destination in the load phase.
Load The final step consists of loading the prepared data to the
destination repository, usually a data warehouse. The transform phase
has prepared new facts and dimension members to be loaded to it.
Common load patterns are:

Full Destination is emptied, and all stage-ready data is transferred.
Incremental Only new data is added to what already exists in the
destination.
Differential New data is added and existing data is updated with new
values. In some scenarios, data deleted on the source side is flagged
as deleted (or less frequently, physically deleted).

Relevant components in the Microsoft Data platform for ETL are:
Microsoft SQL Server Integration Services (mostly in on-premises
scenarios)
Azure Data Factory (mostly in cloud or hybrid scenarios)

 Exam Tip

A very common technique used in data warehousing is partitioning.
Horizontal partitioning, in particular, comes in handy in differential
load workload types, since it allows for replacing a subset of a large
table with minimal I/O.

More info can be found here: https://docs.microsoft.com/en-
us/azure/architecture/best-practices/data-partitioning.

Microsoft SQL Server Integration Services (SSIS) replaces the Data
Transformation Service (DTS) component in Microsoft SQL Server 2005
and later editions. You can use this comprehensive platform to build
enterprise-grade data integration and data transformation solutions. SSIS
provides out-of-the-box connectors for many different sources and formats,
but you can also extend it with custom connectors. Also, SSIS provides a
lot of task and transformation components, covering most common
activities in data integration projects.

Core execution is based on packages, which can be developed
graphically in Microsoft Visual Studio through a free extension. A package
has two main flows—the control flow and the data flow, which are very
common in data pipelines.

Control Flow This is an ordered set of tasks to be performed. These
tasks have an outcome (success, failure, completion) and can be
connected through precedence constraints to create a complex
workflow of activities. Figure 1-17 shows a simple control flow,
where the resulting records of a query against a SQL Server database
are iterated and a child package is executed for each item.

https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning

Figure 1-17 Control Flow pane

Data Flow This is where the actual transformations over data take
place. Data flow is a specific task in the control flow, and it allows for
one or more data sources, one or more destinations, and zero or more
transformations in-between. Data flow heavily depends on schema
metadata, and when they occur, source schema drifts easily cause a
validation error, preventing the package from running. This may
appear to be a limitation—and it is in some ways—but it is necessary
to ensure good performance and data consistency, avoiding where
possible implicit conversions or truncations that may lead to
unexpected output. Data flows, in fact, run in memory and are
compiled as C++ executables under the hood, so the resulting code
cannot adapt very well to changes at runtime. It is important when the
data flows from source to destination to keep memory consumption as
low as possible, avoiding so-called blocking transformations. Think
about Sort, for example: to sort a data set, first you have to get it all
from the source, and only then you could order it; in case of a big data
set, this could lead to memory issues, so you better avoid such

operations when possible. As a rule of thumb, try to avoid complex
transformations chains and leverage the SQL Server engine instead: in
the same Sort example, ordering may be performed at the source with
a simple ORDER BY clause in the statement, maybe enhancing it with a
supporting physical index on the underlying table. Figure 1-18 shows
a sample data flow that implements part of the loading process of a
slowly changing dimension.

Figure 1-18 Data Flow pane

Since SQL Server 2012, SSIS projects are of two types: the Package
Deployment model and the Project Deployment model. The former is more

package-focused, whereas the latter is more project-focused. The Project
Deployment model is the way to go for new projects, since it supports a lot
of important features in an enterprise scenario: project and package
parameters, relative in-project references between packages (which make it
easy to create master-child relationships between packages), a central
dedicated catalog database, and multiple environment-dependent
configurations, among other features. Also, the output of the compilation is
a single file (with the .ispac extension), which makes integrating SSIS
projects with DevOps pipelines more straightforward.

Azure Data Factory v2 (ADF) is a PaaS data movement and
orchestration engine, and it shines in cloud or hybrid scenarios. It has a
handy web UI (shown in Figure 1-19) for developing your pipelines (but
you can also use tools like Visual Studio, if you do not mind having to edit
complex JSON files). ADF has a strong integration with Azure DevOps, it
provides a rich set of REST APIs to interact with, and it has a prebuilt
monitoring dashboard that lets you keep track of execution outcomes and
resource consumption. You can also monitor activities through the Azure
Monitor service.

Figure 1-19 An Azure Data Factory pipeline

Note Azure Data Factory v1

It is still possible to create a version 1 data factory, but it is
considered legacy and should not be used for new projects.

The ADF core engine is based on runtimes, and you can have three
different types:

Azure This is responsible for all the data movements and activity
orchestration performed on the cloud or within services accessible
from the cloud.
Self-hosted This allows access to resources behind a firewall, that are
not publicly accessible from the cloud, or that require particular
drivers to be queried. After you download and install it on a proxy
machine, you have to register it in your data factory and then you can
use it seamlessly as if it were an Azure runtime.
SSIS This is probably your first choice when you want to lift-and-shift
your workload from an on-premises SQL Server Integration Services
installation to the cloud. It only supports the Project Deployment
model project type, and you have to point it to an existing Azure SQL
database that will serve as the SSIS catalog. When you run a package
in ADF through the Execute SSIS package activity, one or more virtual
machines are provisioned on-demand, with the Integration Services
engine installed on them. They host the package execution and are
deallocated when it completes.

You may have noticed the lack of the word transformation from ADF
capabilities. The truth is, excluding file format conversion and some minor
file schema modifications (such as removing unwanted columns and
flattening JSON nested objects), ADF is not able to do any transformations
itself but instead relies on external services to do them. You can perform
transformations in three ways:

External services ADF supports many Azure or third-party vendor
services out of the box, like Azure SQL Database, Azure Synapse
Analytics, Azure Databricks, and Azure HDInsight. Also, it can
leverage services like Azure Functions to do custom activities or run
Integration Services packages through SSIS Integration Runtime.
Mapping data flows These are very similar to data flows in SSIS and
provide a rich UI to perform common data modifications such as
union, join, group by, and so on. However, designed transformations
are converted into Spark code, and actual activity is performed by an
on-demand Azure Databricks cluster in a transparent way to the user.

Wrangling data flows These are like mapping data flows, but you
develop transformations using the visual Power Query editor you can
find in Power BI.

For an in-depth Azure Data Factory overview and step-by-step tutorials,
see Chapter 4.

ELT
ELT seems similar to ETL at a first glance (see Figure 1-20), but it is better
suited to big data scenarios since it leverages the scalability and flexibility
of MPP engines like Azure Synapse Analytics, Azure Databricks, or Azure
HDInsight.

Figure 1-20 ELT workflow

Whereas in an ETL workload a specialized engine is used to transform
data prior to loading it to the destination repository, in ELT the load and
transformation phases are performed inside the target itself, since such
engines are capable of handling large volumes of data through scaling.
Also, they work very well with both structured and unstructured data. Let
us break up the two phases:

Extract Data is collected from various sources, and decoupling them
from the process is still as important as it is in ETL. However, there
are two main differences:

A. Collected data is stored in a high-throughput and scalable file
system that is Hadoop Distributed File System (HDFS)-based,
like Azure Blob storage or data lake storage.

B. Save formats that the target engine handles better are preferable.
Typical file formats include Parquet, Avro, Optimized Row
Columnar (ORC), CSV. When the file is compressed, choose a
codec that is splittable. Big chunks of data make the job of MPP
worker nodes very hard, since they limit scaling.

Load & Transform Maybe the most important feature of MPP
engines is the ability to transform data both in-engine and where it
resides. When you have hundreds of gigabytes to handle, moving all
that data just to extract a subset of records from it is a waste of time
and resources. The concept is pretty simple: an MPP engine tries to
map the content of the file to a structured schema to analyze it in
tabular-like form. When the engine actually “touches” the data, it does
its best to move as little data as possible, skipping all those records
filtered out by predicates or not pertinent to the results. Techniques
like partition pruning or predicate pushdown are enforced when
applicable. However, it goes without saying that it is important to
write code that queries data and performs transformations in an
engine-aware fashion in order to exploit its strong points. Also,
exploring the data before processing it lets you choose the best way to
approach it, taking advantage of the data’s physical structure.
In some cases the data is not in a form that fits the engine. As an
example, think about a very large but compressed file not partitioned
nor splittable; working with it is a challenge for most MPP engines, so
as a first step you could apply a transformation and just split the file
into smaller chunks, and only then proceed with more complex steps.

 Exam Tip

The technique of consuming data where it resides is called data
virtualization. In a good data virtualization architecture, the repository
where data is stored must have the ability to scale; otherwise, it can
quickly become the bottleneck of the whole process.

Although from a higher point of view the approach to the problem is
similar, under the hood the three engines listed here act very differently
when it comes to processing the data:

Azure HDInsight is a cloud service that lets you implement, manage,
and monitor a cluster for Hadoop, Spark, HBase, Kafka, Storm, Hive
LLAP, and ML Service in an easy and effective way. Its applications
include batch and stream processing, data science, and interactive query
over big data storage. Decoupling compute from storage allows for
processing at scale.

Azure Databricks is a cloud service from the creators of Apache Spark,
combined with a great integration with the Azure platform. It supports only
Spark clusters, but since the Spark framework comes with modules and
libraries for batch processing, stream processing, data science, and graph
databases, it is rapidly growing in popularity. A Spark cluster in Databricks
differs from the same type in HDInsight in many ways, but maybe the most
important ones are as follows:

Spark runtime in Databricks is a closed source, highly optimized
version of its open source parent, used by HDInsight.
Cluster management is much easier in Databricks since it can be
paused when not needed; also, it supports auto-scaling under heavy
load and auto-shutdown after an idle timeout. In HDInsight, you
cannot pause an idle cluster—you have to destroy it and re-create it
when it’s needed again; moreover, HDInsight does not support auto-
expand—you have to scale up and down manually.

Databricks is a collaborative platform, where data engineers, data
scientists, and business users can coexist and work together. Also, it
has an extensive integration with Azure services, whereas HDInsight
is behind it in both aspects.

Azure Synapse Analytics is the new name for Azure SQL Data
Warehouse, but it extends it in many ways. It aims to be a comprehensive
analytics platform, from data ingestion to presentation, bringing together
one-click data exploration, robust pipelines, enterprise-grade database
service, and report authoring. Think about having Azure SQL Data
Warehouse, Data Factory, Spark, and Power BI all together, developing,
managing, and monitoring all of them from a single UI: Azure Synapse
Studio. Though as of this writing most of the following features are in
public or even private preview, it is worth mentioning a few of them:

Provisioned or on-demand SQL Server pools (Azure SQL Data
Warehouse engine)
Provisioned or on-demand Spark pools
Stream processing capabilities through window aggregations
ML models integration through the PREDICT statement
Azure DevOps integration
Data Factory–like pipelines development experience
Power BI report editor integration

The Spark you find in Synapse Analytics is a Microsoft fork of the open
source project, with some optimization and early integration like
Spark.NET language support.

For more info about Azure HDInsight, Azure Databricks, and Azure
Synapse Analytics, and to better understand which you should use and
when, see Chapters 3 and 4.

Describe data visualization and basic chart types

Whether you are in early stages of the analytics curve or at the top of it,
data visualization is paramount to bringing value to your analytics process.
End users, business users, and decision makers all eventually need to look
at the data in a human-readable way.

The field of analytics is complex and requires a multidisciplinary skill
set to be truly mastered. Developers usually lack the basics of data
visualization concepts and produce reports that are difficult to read; graphic
designers, on the other hand, often architect beautiful visualizations that are
hard to reproduce with the reporting tools at their disposal.

The truth is that catch-all reports do not exist, and every attempt to
produce one generally results in a waste of time and resources. Different
users need different types of visualization, and a layered access to data is
often a business requirement that an analytics project has to meet. You can
identify three macro-layers:

Analytical access Here, users can access even granular information.
A typical example is an Excel pivot table connected to an OLAP cube.
The OLAP semantic model allows users to quickly slice and dice an
aggregated value into its parts, effectively digging through large
amounts of data with just drag and drop. Working at this layer requires
a good business understanding and a great knowledge of process
workflows of the organization. Organizational security is enforced to
prevent users from accessing information they are not allowed to see.
Reporting access Prebuilt reports are available to users. Such reports
can be almost static—users just set filter values and refresh them to
get an updated output—or dynamic, where filters, slicers, and visuals
are interconnected and allow for a more interactive and eye-catching
experience. Reports are usually accessed through a portal and divided
into thematic areas, corresponding to internal Business Units.
Organizational security is enforced to prevent users from accessing
information they are not allowed to see. More skilled users could be
able to author new reports using a dedicated tool and publish them to
the portal.
Dashboarding access Think of a dashboard as the first page of a
newspaper: a quick and fresh overview of the most relevant topics,
with convenient references to more in-depth content. In modern

visualization tools, a dashboard is a selected collection of report parts,
and its aim is to show the health status of the organization and enable
users to quickly take remediation actions when bad trends are spotted.
In fact, typical consumers of dashboards are decision makers.
Organizational security is enforced to prevent users from accessing
information they are not allowed to see.

Data can be presented in many different forms, and choosing the right
visual is not an easy task. Wrong visualizations could make a report
difficult to read or, even worse, lead users to bad assumptions. Also, you
should maintain aspect and colors consistently across all reports, since you
do not want viewers to be focused on understanding how data is displayed
instead of the business meaning behind it. Another important aspect is that
users want to consume reports and dashboards on their mobile phones and
tablets just like they do on their desktops, and visualization engines must
automatically adapt reports’ appearance depending on the device they are
displayed on. When you have hundreds of reports, developing different
versions of them just to adapt to different screen sizes is not an option.

The following is a list of the most basic visuals used in reports:
Table A table displays attribute members on rows and measures on
columns. A simple table is generally easy for users to understand, but
it can quickly become difficult to read as the number of rows and
columns increases. In some types of reports, a table is paginated to
prevent it from crossing a page boundary when no more room is
available for rows on the page. Figure 1-21 shows a simple table
visual.

Figure 1-21 Table visual

Matrix A matrix is a more sophisticated table. It allows for attributes
also on columns and can auto-calculate subtotals. Also, as you can see
in Figure 1-22, if you have more than one attribute on rows or
columns you can expand and collapse levels through drill-down.

Figure 1-22 Matrix visual

Stacked column chart A stacked column chart is useful when you
want to compare performance of attribute values to a common
measure. Also, a stacked column chart allows you to specify other
attributes that have a parent-child relationship with the first one; this
way, you can display the contribution of children to the parent value,
as shown in Figure 1-23.

Figure 1-23 Stacked column chart visual

Line chart A line chart represents how a measure changes over time.
Figure 1-24 shows a useful addition to visuals in Power BI: You can
specify other measures to be displayed in a contextual tooltip so that
you can show a possible correlation between them.

Figure 1-24 Line chart visual

Pie chart Take a look at Figure 1-25. If someone asks you to rank
these three product categories by order total without looking at the
numbers, you would probably end up guessing who the second and
third are. The truth is that the human brain is not used to areas and
angles estimation. Pie charts are common in reports and presentations,
but they are rarely used in the right way. A general rule of thumb is
that a pie chart should display no more than three values; two is even
better. To strengthen this concept, take a look at Figure 1-23, which
shows the very same product categories and total order measure with a
comparison that is much clearer.

Figure 1-25 Pie chart visual

Scatter chart A scatter chart displays the possible correlation
between two measures. Figure 1-26 shows product model sales, and as
you can see, an increase in order quantity almost always corresponds
to an increase in order total. However, you can spot that sales for the
Road-250 model have been good despite its low order quantity, so it is
indeed a profitable model.

Figure 1-26 Scatter chart visual

Card A card focuses on a single measure (as shown in Figure 1-27),
displaying its value in a clear and readable way.

Figure 1-27 Card visual

KPI A key performance indicator (KPI) is a specialized card. As
shown in Figure 1-28, it not only shows a measure value, but also
shows whether it meets a specific target and the distance to it. Two or
three colors are usually referenced as a visual standard in KPIs:

Green: Target has been reached and possibly exceeded.
Red: Target has not been met yet.
Yellow/Orange: You can specify a neighborhood around the target to
indicate a warning area, something like “You’re very close to the
target” or “You’ve already met the target, but you can do even
better.”

Figure 1-28 KPI visual

Map chart A map (see Figure 1-29) is useful to show the geographic
distribution of your data—for example, where your customers are or
where specific events have happened. Nowadays, map visuals are very
sophisticated and rely on open or free map services to serve you with
road, aerial, or territorial views, and they have geocoding built in.
When your data lacks information such as latitude and longitude,
geocoding can be applied to translate a street address to a point on the
globe. Addresses must be well formatted and as complete as possible
to avoid incorrect decoding and points misplacement. If your lookup
field contains just “Roma,” for example, depending on the regional
settings output it could be the capital city of Italy or a small city in
eastern Australia.

Figure 1-29 Map chart visual

In an analytics process, the preparation of the serving layer is often an
additional step at the end of the pipeline. In modern architectures, this step
may be shared between IT users and business users. IT users design and
maintain the enterprise data warehouse (EDW), the analytics pipeline, and
the preparation of curated data sets (which are usually consumer
independent—for example, they extract entities like Customers, Orders,
and so on), and business users consume these entities to create reports and
dashboards, or they merge them with local data not worth the effort to be
included in the EDW. Further transformations performed directly by
business users are often referred to as self-service business intelligence
(BI), and they somewhat resemble the classic BI projects. The difference
lies in the tools used to achieve the result.

In the Microsoft data platform, for years the de facto standard platform
for reporting has been Microsoft SQL Server Reporting Services (SSRS).
SSRS is a powerful service and includes many useful tools both for
development and presentation of reports. Despite the availability of a user-
friendly report designer tool (Report Builder), its tight integration with
Microsoft SharePoint, and recent acquisitions (such as Datazen) that lend a
fresh new look to its visuals, SSRS has failed to support the enterprise

needs of self-service BI and dashboarding, and its use is mostly targeted to
operational reporting.

About 10 years ago, a few people from the SSRS development team
started a new project, which, after some evolutions, was released in 2015 as
a standalone service: Power BI. At the present time, Power BI has a
monthly release cycle, with regular updates and many improvements
version after version. It has quickly grown in adoption, since even its free
tier enables users to explore different data sources, transform, blend them
together through an easy-to-use editor, and display the output in an
appealing and interactive way. Also, it integrates typical Reporting Services
reports, renaming them paginated reports, and with the addition of machine
learning capabilities, it has become a user-sized unified tool for the whole
analytics process. At the heart of Power BI lies the Analysis Services
Tabular engine, making it not only a tool for users but also an enterprise-
wise platform.

Need More Review? Power BI Service

Power BI Service is treated in detail in Chapter 4 of this book.

Chapter summary
Modern data architectures contain a mix of different workload types.
Stream workload is a real-time processing of messages (or events)
produced by sensors, devices, and applications. Such messages are
usually aggregated by time windows and sent to live dashboards.
Also, raw messages are stored in high-capacity and low-cost storages
like data lakes for further analysis.
Batch workload is a massive transformation of data coming usually
from relational stores or data lakes. This data can fall under the big
data domain, having one, some, or all of the following traits: volume,

velocity, variety, veracity, and value. Batch processing may require a
specialized engine, like Hadoop-based systems or MPP platforms, that
are able to scale at need.
Relational data is a robust and mature architecture that has existed for
many years. It enforces referential integrity between tables through
constraints, making it a good choice for storing structured data.
The readiness of organizations to approach analytics processing can be
summarized in four main steps, from the easiest to the hardest:
descriptive analysis, diagnostic analysis, predictive analysis, and
prescriptive analysis. However, the very first step consists of gathering
and preparing relevant data.
Advanced analytics leverages AI and machine learning (ML) to
extract valuable information, predictions, or patterns from data. The
Team Data Science Process is an agile approach to the data science
lifecycle that applies DevOps concepts to ML model development,
deployment, and maintenance.
ETL and ELT are two common patterns for data extraction and
preparation. They share the same conceptual steps but end up with
different implementations. In ETL, you use a specialized engine to
perform the transform phase and then load data into a target
repository. In ELT, the target repository also has the ability to
transform data in a very effective way and move only needed data in
it, so the load and transform phases are performed inside the target
repository itself. ETL is more common in on-premises scenarios, and
ELT is more common in hybrid or cloud scenarios.
Data visualization is the last step of the analytics process and enables
users to see the data in a form they can easily understand. More
advanced users may need access to the source data to explore or build
reports themselves; in that case, it is important to prepare curated data
sets to limit (or, better, to avoid) the possibility of extracting incorrect
results.

Thought experiment

In this thought experiment, you can demonstrate your skills and knowledge
about the topics covered in this chapter. You can find the answers to this
thought experiment in the next section.

You are a data platform architect of a company that is eager to enter the
advanced analytics world. At the moment, data is stored in an on-premises
SQL Server data warehouse, but resources are becoming scarce, disk space
is running low, and the actual ETL process cannot stay within the scheduled
night window and overlaps with the morning activities, slowing down the
OLTP system.

The company is hiring one senior and two junior data scientists. They
will form the team in charge of developing and maintaining the machine
learning models, which as a starting point, will be used to perform root
cause analysis to understand why income from the last year has been under
expectations.

The target cloud platform will be Microsoft Azure. The CTO identified
Azure Synapse Analytics as the repository of choice and is asking you to
complete the picture with other services your company will need. Also, you
have to choose the right storage type.

This is the information you have at the moment that will guide your
choice:

The OLTP system, which is the data warehouse’s primary source of
data, will remain on-premises and will not be exposed to the Internet.
Data scientists would like to have access to granular and raw data,
instead of having to read the post-processed records from the data
warehouse.
Interviews have shown that all of the data scientists have prior
experience with Spark, and they aim to have a collaborative approach
to development.
Actual IT staff has no experience with Hadoop systems.
You have to keep the total services number at a minimum, reusing
services when possible.

Answer the following questions about the services you choose to fulfill
business needs:

1. Which storage do you choose for storing the raw data, and why?
2. Which service do you choose for data pipeline orchestration, and why?
3. Which development environment best fits data scientists needs, and why?
4. Which deployment environment do you choose for hosting the model and

performing actual predictions, and why?

Thought experiment answers
This section contains the solutions to the thought experiment. Each answer
explains why the answer choice is correct.
1. Azure Storage is the right choice.
Raw data is usually stored in binary, compressed format like Parquet.

2. Azure Data Factory is the right choice.
It has a built-in connector for Azure Synapse Analytics and, moreover, it
can access private network resources through the Self-Hosted Integration
Runtime component. Mapping Data Flows can be used to perform
transformations over data.

3. Azure Databricks is the right choice.
It is a Spark-only environment, heavily optimized, and its UI is designed
with team collaboration in mind. It has native integration with Azure
Active Directory and many other services, and Azure Storage is one of
them. MLOps is also available, making it easy to track experiments and
choose the best-performing model. Maintenance is greatly reduced
compared to Spark on HDInsight, and this results in a smoother learning
curve for internal staff. Another option could be Azure Synapse Analytics
and its Spark pools, but as of this writing they are in preview and
developers do not have many collaborative features.

4. Both Azure Databricks and Azure Machine Learning services could be
the right choices.

They have a model registry to keep track of deployed models and version
them, and they can be orchestrated by Azure Data Factory to perform
scoring when needed. Also, they can be automated through their API layer.

However, since to meet the requirement you have to introduce as few
services as possible, Azure Databricks is the better choice between the two.

Chapter 2

Describe how to work with
relational data on Azure

Relational data is the most used storage since the last quarter of the past
century. It is likely the concept most students study at the very beginning of
their careers. You will find concepts about how the data is stored, and the
best ways to design them, in hundreds of books. No matter what kind of
information you want to preserve, a relational database is most likely a
good option.

Note Other options

As you will read in the next chapter, a relational database is not
the only option, and in some cases, relational data storage is not
the best choice.

Skills covered in this chapter:
Skill 2.1: Describe relational data workloads
Skill 2.2: Describe relational Azure data services
Skill 2.3: Identify basic management tasks for relational data
Skill 2.4: Describe query techniques for data using SQL language

Skill 2.1: Describe relational data
workloads
Relational data storage is described as storing information based on a
predefined structure of the information. Depending on the use of your data
and your workload, you must select the technique that best matches your
needs. Conceptually, in relational databases you try to define things to
represent the entities in the real world, like persons, companies, products,
bills, and so on. We use the term “relational” to describe the relation in the
data representing an entity, and not just because, for example, one bill could
be related to a person and a customer and was generated by a company.
Moreover, it can have several products in the details, and all these elements
are related. All this information must be stored in some way, and that is
what we will cover here.

This skill covers how to:
Identify the right data offering for a relational workload
Describe relational data structures

Identify the right data offering for a relational
workload
If you analyze how your data has been managed in the past, usually you
find one or more applications storing information in a centralized storage,
probably a single database. Unless different business processes, or different
areas, are involved with specific privacy or security reasons, you will find a
lot of applications storing all the information in just one database. However,
during recent years, this has been changing. A lot of information is now

stored in several formats and places all around the world (in fact, all around
the “cloud”).

And this is an important matter to consider. Not only must you manage
the data, but you also must get information from several sources and,
probably, adapt it to match the way your business uses the information.

Note Information journey

Consider the information traveling in an information pipeline,
where each station can modify, extract, change, or refine
information. That is the way information is managed these days.

Online transaction processing (OLTP)
This workload is what we typically get from business transactions, like
bank transfers, online shopping, and cash machines, that are preserved in a
data store. It is the repository for any transaction related to the activities.

In a health-care system, the information about every patient and each
event—disease or symptom, treatment, blood analysis, X-ray, and so forth
—consists of activities for the system, and usually they are related in order
to manage the information clearly.

The concepts about OLTP are well known. The workload has been
deeply analyzed, and many rules have been defined to make OLTP work
better. Probably the most important is the atomicity, consistency, isolation,
durability (ACID) concept, which defines the properties of database
transactions that must be completed to guarantee sustainable operations.

 Exam Tip

ACID is a very important concept. In this book, you have the basic
definitions, but other resources elaborate on it. As a starting point, you
can read the first article about this concept, “Principles of transaction-
oriented database recovery,” at https://dl.acm.org/doi/10.1145/289.291.

Atomicity
The name “atomicity” derives from the concept of an atom. It is something
that must be together. It is “all or nothing.”

Consider this scenario: A patient requires treatment in the ER. The
doctor needs some laboratory checks for diagnostics purposes. The doctor
performs some procedures to cure the diagnosed disease.

When the procedures are completed, several pieces of information must
be recorded:

1. The patient’s symptoms
2. The list of laboratory checks
3. The result of those checks
4. Each procedure, medical instrument, medication and dosage
5. The closure: recommendations, future follow-up procedures, and so

on

All this information and all the detailed costs of the procedures must be
recorded as a single unit. It is not useful, for example, to have the
symptoms without the laboratory results.

Ensuring that all the information is stored as one block, as an atom
including all the parts at the same time, is atomicity.

Consistency
The information stored in a relational database usually has defined rules to
ensure that all the information makes sense. Using the previous example,
there is no sense in having the laboratory results without any indication of
which patient they belong to, or the exact definition of the procedure.

https://dl.acm.org/doi/10.1145/289.291

Ensuring that the information can be related in a specific way in the
future is consistency.

Isolation
Isolation ensures that other actors in the process do not access partial
information.

Two different areas in the hospital using the same information must
access the same data. If someone at the ER office is entering the
information at the same time another person is preparing the bill, it will not
be good if the second person obtains the already stored laboratory checks
while the first person is still completing the registration of the procedures
or drugs used to treat the patient.

During the update procedure, until the consistency has been maintained,
the information for this specific transaction must be isolated from others.

 Exam Tip

There is some fine-tuning of isolation, the so-called isolation levels. It
is important to understand how they modify the behavior of the reads
in a database environment. You can learn more here:
https://docs.microsoft.com/en-us/sql/connect/jdbc/understanding-
isolation-levels.

Durability
Durability ensures that the information can be accessed later even after a
system crash. Most relational database systems (RDBSs) use a mechanism
to quickly store each step of an activity and then confirm all of them at the
same time (known as a commit).

After the commit succeeds, the information is secure. Of course, IT
departments must deal with external factors, but from a relational database

https://docs.microsoft.com/en-us/sql/connect/jdbc/understanding-isolation-levels

point of view, the information is safe.

Online analytical processing (OLAP)
The OLAP workload, even when still a relational workload, was developed
with data analysis in mind. You can think of it as looking to the past. The
important element here is analyzing what happened instead of registering
what is going on.

Using the previous example, OLAP will be used to evaluate how many
patients the ER treated in the last week, or month, or year; how many
require follow-up; the average number of laboratory procedures per patient;
and so on.

The most important difference between OLTP and OLAP is that OLAP
is implemented for reading big amounts of data for data analysis, whereas
OLTP is designed for many parallel write transactions.

Another difference you can find in OLAP implementations is the fact
that, usually, the OLAP data has been restructured to facilitate the queries.

Look at the partial entity-relationship diagram of products in the
Adventure Works OLTP database, shown in Figure 2-1, and compare it
with the diagram for products in the Adventure Works OLAP database,
shown in Figure 2-2. The second one is more simplistic, but the tables
contain more columns. Moreover, if you look at the Product table in the
OLAP version, you will see that it has columns that are in other related
tables in the OLTP model. That is because the OLAP data is flattened
several times to accelerate the reads during the query process.

Note Different schemas

Notice that the entities in both schemas do not have exact
matches; they are used just as a sample to better illustrate OLAP
database design and do not necessarily match the structured
database design rules.

The OLAP database uses a semantic model instead of a database
schema. The semantic model redefines the information from a business
point of view, rather than using a structured point of view as the OLTP
database schema does. This is because the business user, who is the final
consumer for an OLAP implementation, knows the business entities but not
the underlying data schema.

The semantic model usually contains calculations already performed,
time-oriented calculations, aggregation from different tables to make it
easier to read the information, and in some cases, aggregation from
different sources.

Figure 2-1 OLTP database product relationships

Figure 2-2 OLAP database product relationship

When you define an OLAP workload, you must decide which kind of
semantic model to use, as shown in Table 2-1.

Table 2-1 OLAP semantic models

OLAP
Model

Description

Tabular Like OLTP models, this model uses concepts such as
tables, columns, and relationships.

Multidimen
sional

A more traditional OLAP approach is used, based on
cubes, dimensions, and measures.

Data warehousing
Using information from different sources, during a long period of time,
implies keeping historical information in a secure, consistent way.
Moreover, the storage solution must not burden the other workloads with
the analytical process. This is where a data warehouse comes in.

A data warehouse is the place to store historical and current information,
preprocessed in ways that facilitate the business analytical queries to get
better results. In the implementation of a data warehouse, procedures are
used to cleanse the data and make it consistent. Because the information
can come from disparate sources, it must be preprocessed to facilitate better
results from the business analytical queries.

Several different tools and procedures are available to keep the
information up-to-date in a data warehouse, but all can be defined as a
three-part process: extract the information from the sources; store the
results in the data warehouse; and transform, process, and ensure data
quality in some parts of the process.

Sometimes, you prefer to transform the data before storing it in the data
warehouse (the extract, transform, and load [ETL] process). In other
circumstances, it could be more reliable, more secure, or simply cheaper to
move all the information into the data warehouse and then process it (the
extract, load, and transform [ELT] process).

Need More Review? Transformation processes

For more information about the transformation processes, review
Skill 1.2, “Describe data analytics core concepts,” in this book.

Describe relational data structures
Relational data is about having the information stored according to specific
structures and predefined elements. This ensures the quality of the queries,
the relationships, and the consistency of the information. The following are
several concepts related to how the information is structured in relational
data structures.

Tables
A table is the basic structure where data is stored. A table predefines the
parts of the data, and the information stored in it must match the defined
schema.

A table defines columns to identify each piece of information about the
entity it stores. Consider the set of information in Table 2-2 (let’s say it is
information about sales regions).

Table 2-2 Table data sample

Name Country Start SalesLastYear

Name Country Start SalesLastYear

North US 05/01/2010 $ 3,298,694.49

Central US 06/01/2012 $ 3,205,014.08

South US 03/01/2008 $ 5,366,575.71

Canada CA 08/01/2010 $ 5,693,988.86

France FR 09/01/2006 $ 2,396,539.76

Germany DE 10/01/2012 $ 1,307,949.79

Australia AU 11/01/2018 $ 2,278,548.98

To store the information, a relational database must have a table that
defines the columns, including their properties. The column definition
specifies not only the name of each column (which must be unique to the
table), but also the type of information the column will contain in each
entry.

In some cases, when the entities you want to store have different sizes,
most database engines allow you to define a specific or a maximum size.

Also, you can apply other kinds of restrictions. In this example, just one
column is allowed to have no value, since the first time a new entry is
added, no value for that column is added (for example, a new region will
not have sales from the previous year, since it is new). This concept is
represented in Table 2-3.

Table 2-3 Data columns and constrains

Column name Type Size Allow empty

Name Characters 100 No

Country Characters 2 No

Start Date No

Column name Type Size Allow empty

SalesLastYear Money Yes

Each database engine has its own data type definitions. However, most
of them define the same standards, often with different nomenclatures and
some specific data types not shared with others. But the most important
types are the same for all of them. Table 2-4 shows the various data types.

Table 2-4 Standard data types

Information Type Standard Data types

Characters Size Data Types

Fixed length char

nchar (Unicode)

Variable length varchar

nvarchar (Unicode)

Numbers Size Data Types

Integer integer

smallinteger

biginteger

tinyinteger

Information Type Standard Data types

Non-integer decimal

numeric

float

real

double

money

Other data Size Data Types

Dates smallDateTime

dateTime

time

timespan

Logical bit

Other binary

image

Etc.

 Exam Tip

The name of nvarchar, or nchar, stands for National CHARacters.
Using the N at the beginning of the name signals that the data type is
for Unicode/double-byte characters.

Indexes
When you have a lot of information stored in a table, finding a specific
entry could be time consuming. Imagine yourself in a room with hundreds
of thousands of folders of information, trying to find a specific entry.
Without classifications, you are in for a lot of work to find the information
you are searching for.

Now think about having each folder with hundreds of pages . . . you will
have to lift each of the folders to see if it is the correct one. That can be
heavy work!

Something similar occurs in the database engine.
Finding your folder will be so much easier if you have a collection of

tabs, with the tabs ordered and just the most important information to
identify each one of your folders. That way, you can quickly locate the
folder you are looking for in all your libraries.

That is the concept behind indexes. Instead of you reading each entire
row, one at a time, to find the entry you need, the system searches an index
to get the exact location of the information in the table.

In Figure 2-3, you can see how the index search works.

Figure 2-3 Index search

In a similar way, indexes can combine more than one column for lookup
purposes.

Indexes can be used to:
Ensure uniqueness of each key in a table, defined as the unique key.
Establish the most important key to search, called the primary key.
Use relationships to speed up search correlation between data in
columns in one table and the values of the column(s) of the primary
key of another table.

Views
Once you have data stored in tables, you probably need to filter or regroup
information in different ways for different users. Most important, it is often
the case that not all the information stored in each table can be viewed by
all your users. You might have sensitive information intended only for a
subset of users or just a couple of columns some users need to view. In that
case, you can use views to redefine the data to make it accessible in a
reliable and secure form.

Consider a table with employee information. Any person in the
company may need information from this table. However, salaries must not
be visible to anyone except Human Resources personnel.

Here is another example. Suppose management needs the total sales by
vendor, employee, year, and month. Instead of making management
perform the calculation, you can have the information ready, in an already
prepared view.

Keep in mind that the view does not store information. It is a virtual
definition of how you want to see the information. Every time you query
the view, the database platform will query the original table(s) to show you
only the information you need.

A view is just a statement to query data from the table(s), not the final
data. To enhance performance, when the database engine receives the order
to store a view, it performs the following steps:

1. Checks the correctness of the statement itself
2. Verifies that all the columns and tables in use are present in the

database
3. Determines the best plan to query the different parts of the data

retrieved
4. Compiles the statement with that best plan (usually named the

query or execution plan)

By doing this, the database engine, once executed the first time, will
have the query plan in the cache and can use it.

 Exam Tip

Data changes with time. When the engine estimates a query plan,
different tables can have a different number of rows, and the tables can
have different amounts of data when it is required by the view.

That is why the data engine uses statistics to evaluate how much the
data has changed.

If the statistics of one or more tables implied in a view are changed,
the engine recalculates the query plan and stores the new one, before

extracting the results.

Listing 2-1 is a sample of a view created to get information from five
different tables.

Listing 2-1 View sample
Click here to view code image
CREATE VIEW [Salestotal]
AS
 SELECT
 YEAR([Soh].[Duedate]) AS [Year]
 , MONTH([Soh].[Duedate]) AS [Month]
 , [Prod].[Name] AS [Product]
 , [Per].[Lastname] + ', ' + [Per].[Firstname] AS [Vendor]
 , SUM([Sod].[Orderqty]) AS [Quantity]
 , SUM([Sod].[Linetotal]) AS [Total]
 FROM
 [Sales].[Salesorderdetail] AS [Sod]
 INNER JOIN
 [Sales].[Salesorderheader] AS [Soh]
 ON
 [Sod].[Salesorderid]
 = [Soh].[Salesorderid]
 INNER JOIN
 [Sales].[Salesperson] AS [Sp]
 ON
 [Soh].[Salespersonid]
 = [Sp].[Businessentityid]
 AND
 [Soh].[Salespersonid]
 = [Sp].[Businessentityid]
 INNER JOIN
 [Production].[Product] AS [Prod]
 ON
 [Sod].[Productid]
 = [Prod].[Productid]
 INNER JOIN
 [Person].[Person] AS [Per]
 ON
 [Sp].[Businessentityid]
 = [Per].[Businessentityid]

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#p02lis01a

 GROUP BY
 YEAR([Soh].[Duedate])
 , MONTH([Soh].[Duedate])
 , [Prod].[Name]
 , [Per].[Lastname] + ', ' + [Per].[Firstname];
Procedures

Procedures are another important element you can have in relational
database engines. A procedure is a list of actions the database engine will
execute, such as getting information, performing updates, or other tasks
against the data.

Some procedures can act over several tables, making changes to them,
calculating results, and updating the values in other tables. Each procedure
implies at least a transaction (review the ACID concept).

Note The benefit of views and procedures

Views and procedures contain statements to be executed by the
database engine. It might seem that having views or procedures
and creating the statements each time an application needs those
results is the same thing. However, there is an important
difference. The steps for preparing the execution will be done
once before the view or the procedure will be stored in the
database, as you learned when we explained the description of
views.

Skill 2.2: Describe relational Azure data
services
An information technology (IT) infrastructure does not consist of only
laptops, printers, monitors, and wires. Besides the servers, switches, routers,
RJ-45 cables, and connectors, you must consider other aspects such as
power supply, the building, the hardware, and hardware maintenance. The

total cost of ownership (TCO) must include those elements, plus the costs
related to maintenance, such as IT personnel salaries, spare parts, and
insurance.

Of course, hardware must be included in the TCO. In some cases, the
hardware requirements vary with time. A company selling Christmas lights
will not need the same hardware in June as they do in November-
December. But they must have the appropriate hardware for the holiday
months, even if for the rest of the year the hardware will be a waste of
resources.

Sooner or later, the company may consider leasing the hardware for
those high-consumption periods, but the rest of the implementation must be
accomplished as well. Installing the operating system, configuring network
connectivity, installing and implementing the required services and
applications, and so forth require licensing, work time, and other factors. It
would be better if the company could rent the entire platform already
prepared. And that was the original idea behind Microsoft Azure.

Azure releases companies and organizations from the responsibility of
preparing and maintaining the basic infrastructure. Azure has several
datacenters all around the world, with the proper infrastructure, protection,
security, and reliability. You can use Azure to prepare all the hardware,
networking, security, and firewalls needed to secure your information.
Then, you can use Azure to configure servers and storage hardware and
configure them to complete a functional datacenter.

Think in huge terms. An Azure datacenter could contain thousands of
servers and disks.

Figure 2-4 is a graphical representation of an Azure datacenter and
shows how the platform services are integrated inside secure buildings.

Figure 2-4 Azure datacenter drawing

Note Azure global distribution

For a detailed look at the updated global distribution map, go to
https://map.buildazure.com.

You can then lease required services at any time, with just the exact cost
for each period.

This skill covers how to:
Describe and compare PaaS, IaaS, and SaaS delivery models
Describe Azure SQL Database
Describe Azure Synapse Analytics
Describe SQL Server on Azure Virtual Machine
Describe Azure Database for PostgreSQL, Azure Database for
MariaDB, and Azure Database for MySQL
Describe Azure SQL Managed Instance

https://map.buildazure.com/

Describe and compare PaaS, IaaS, and SaaS
delivery models
There are three service specifications Azure brings to customers, depending
on their needs: IaaS, PaaS, and SaaS.

Infrastructure as a service
Infrastructure as a service (IaaS) is the basic part of the Azure services. It
includes the following:

The physical plant for the datacenter, the datacenter itself, and the
resource management for the datacenter, such as power supply,
temperature control, physical security
The network service and hardware needed to keep things connected,
the firewalls needed to protect the network from external attacks, and
the corresponding connectivity security
The hardware for servers and storage media, the relationship between
them and the servers, and the redundancy platform to ensure
persistence of the information

IaaS is designed to provide customers with main platform environments
that are typically hard and costly to implement. Features like stability,
reliability, and supportability are included in the contract when you use
service provider agreements meeting service level agreements (SLAs).

There is no need to invest in all the hardware components in the
beginning, which reduces the investment dramatically. Any increase in
requirements and ongoing cost will be reduced, making this an excellent
choice for start-ups and new implementations, including test scenarios. In
addition, any change of requirements can be accomplished very quickly,
since IaaS has resources that can be added to your implementation almost
instantly.

 Exam Tip

The capability to increase resources when needed and to reduce them
when the utilization decreases is a concept known as elasticity and is
managed in all the Azure platforms.

IaaS ensures high availability and disaster recovery. Any
implementation requested by a customer has one or more backups to keep
the data and the process always active.

The main goal for IaaS is to give the customers servers almost instantly
and with the resources they need. After that goal is met, the main resource
IaaS delivers is the virtual machine (VM).

Three components are required to provide VMs:
Computing: A predefined number of processors assigned to the VM
Networking: Communication between the VM, other resources, and
the exterior, mainly, but not exclusively, the internet
Storage: Storage for the operating system disk and other disks for
data, documents, content, media, and so on; stores the application data
and resources the server needs

For each of these elements, Azure has standard sizes, which, when
combined, conform to the various standard VM templates.

Need More Review? Virtual machines templates

You can see the updated list of virtual machine templates for
Azure here: https://docs.microsoft.com/en-us/azure/virtual-
machines/windows/sizes.

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes

Platform as a service
Company requirements are not only the difficult infrastructure to
implement. Usually operating systems, services, and other resources, as
well as development tools and management systems, are required.

Platform as a service (PaaS) provides all these elements in any
combination you need, without managing licenses and service
infrastructure. You have the option to invest in just the resources you use on
a pay-as-you-go basis.

Instead of having one or more VMs, your IT team is responsible for the
following:

Keeping the system healthy, updated, and secure
Installing and maintaining each of the required services

You just purchase the services you need, in the quantity and level you
need, and the Azure engineers will work for you, keeping the systems up-
to-date, secure, and available.

Considering how distributed and remote locations work, PaaS allows
your teams to work using the internet, no matter where they are at any time.
Developers creating applications can use frameworks and tools designed
for scalability, high availability, and global distribution. You can buy data
storage based on your requirements, without over procuring resources and
based on short periods of high utilization.

Something similar occurs with data analysis, business intelligence, big
data, or machine learning. All of them are PaaS services, available to be
used when you need them, and you pay only for what you use.

Note Elasticity principle and PaaS

The PaaS infrastructure follows the elasticity principle: if at one
point of time you need more resources, Azure can provide them
to you. If there is no more need for all the resources, then you can
reduce the resources. Also, the process can be automated
completely.

Consider that the pay-as-you-go implementation starts with a
minimum base—that is, one processor for a small database with
just a couple of queries per day, at a very small cost. The cost
will increase depending on your day-by-day use.

Software as a service
Software as a service (SaaS) is the highest level of service you can use. You
purchase a service, and then you use it as is—no installation, no platform
preparation, and no maintenance tasks.

Any time you check your email using a browser, you are using SaaS, no
matter which email provider you are using. The emails are in the provider’s
servers, and the application that prepares and sends the content to your
browser is a web application hosted in servers from the provider. You just
identify yourself and use them.

You can purchase some kinds of services to have the whole essential
management platform up and ready. The most common elements required
in administration tasks, like document writing, spreadsheet calculations,
email management, document storage, and team working, are included in
Office 365.

Again, this is wonderful for start-ups, since they do not need to have a
physical location to have the servers, software licensing, and
implementation of any kind of shared resources.

In Figure 2-5, you can see the screen an Office 365 user sees when they
go to the www.office.com home page using their company account.

http://www.office.com/

Figure 2-5 Office 365 SaaS

The services provided include enterprise email server, Exchange 365,
Dynamics 365 enterprise resource planning (ERP), and customer
relationship management (CRM), among others. The offering expands with
products from partners, and more and more services are added periodically.
Other services are not directly related to office work, like Azure Internet of
Things (IoT) solution accelerators, used to capture, store, and analyze data
from connected devices.

In Figure 2-6, you can see how the different services from Azure
accomplish a typical company’s needs.

Figure 2-6 Azure services components

Describe Azure SQL Database
One of the services available in the PaaS group is Azure SQL Database.
Azure SQL Database is based on the Microsoft SQL Server database engine
and has nearly the same capabilities as SQL Server on-premises.

You can have a SQL database ready to work in just a couple of minutes,
without the server installation and configuration process.

The Azure platform verifies the database availability, redundancy, and
maintenance of the SQL back end, ensuring your database will be always
up-to-date. You can define the size and computing resources to use for each
database, which impacts the final costs.

Azure SQL Database follows the elasticity principle, and you can
perform and, most important, automate scaling changes for your database.

These are the most important features you should consider:
In-memory technologies In the latest versions, more and more
processes are moved to be executed in memory to accelerate
performance. In the case of Azure SQL Database, since there are
fewer read-write operations to store, potentially this can reduce the
cost. Fast updates scenarios, like grocery supermarkets, data
ingestions from IoT devices, bulk data load, and so forth, are good
candidates for enhancement.
Using temporary tables and table variables in queries is another
scenario where using in-memory technologies is a good improvement.

Clustered columnstore indexes This feature applies mostly to large
tables in data warehouses. Traditionally, the information is stored on a
row-by-row basis. Internally, SQL Server groups rows to fill pages,
which are the minimal unit of physical storage for the database. In
SQL Data Warehouse implementations, you can use the columnstore
data format for any table containing facts. Finally, the concept of
clustered indexes specifies that a data set be physically stored

according to the index. In this scenario, a clustered columnstore index
allows the engine to retrieve information quickly as a set of data for a
specific column. The engine can retrieve information up to 10 times
faster than from standard row-based storage.

Need More Review? Columnstore implementation

You can find more information about columnstore indexes at
https://docs.microsoft.com/en-us/sql/relational-
databases/indexes/columnstore-indexes-overview.

In Azure SQL Database, you can define how to scale and use resources
based on two purchasing models:

vCore-based The name corresponds to virtual core. This model
defines several service tiers, each of them with specific storage
capacity, input-output (I/O) operations per second (IOPSs),
availability implementation, backups procedures, and so on.
DTU-based The database transaction unit (DTU) is a set of resources
assigned to a single or multiple database, estimated as a mix of CPU,
memory, and (I/O) rates. There is a set of predefined combinations for
each range of DTU limits, and based on them, you can choose the one
that best matches your needs.
If you consider migrating an already locally implemented database to
Azure SQL Database, you can use tools available online to estimate
your DTU need. Most of them require you to upload a capture of your
current database/server utilization with the values to calculate DTUs.
If you already have a database hosted by Azure SQL, you can use
Query Performance Insight to see if you need to change the service
tier in use.

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview

Need More Review? Using Query Performance Insight

You can find more information and ways to use Query
Performance Insight here: https://docs.microsoft.com/en-
us/azure/azure-sql/database/query-performance-insight-use.

Here are the various segmentations you have available for the database
services:

1. Service Tiers
The service tiers are defined by their purchasing models:

A. vCore
The services based on virtual cores (vCores) are classified as
shown in Table 2-5.

Table 2-5 vCore service tiers

 General
Purpose

Business
Critical

Hyperscale

Sto
rag
e

Uses
remote
storage

5 GB up to
4 TB

Local SSD
storage

5 GB up to 4
TB

Local SSD plus remote
storage for long-term
storage

Up to 100 TB

IO
PS

Depends on hardware
generations (see below)

Multitiered architecture;
the throughput is directly
related to workload

https://docs.microsoft.com/en-us/azure/azure-sql/database/query-performance-insight-use

 General
Purpose

Business
Critical

Hyperscale

Ava
ilab
ilit
y

1 replica
without
read scale
replica

3 replicas, 1
read; scale-
plus zone-
redundant

1 read-write replica plus
up to 4 read-scale
replicas

Bac
ku
ps

Read access geo redundant
storage from 7 (default) to
35 days

Snapshot based on
remote storage

In
me
mo
ry

Not
supported

Supported Not supported

B. DTU
The services based on database transaction units (DTUs) are
classified as shown in Table 2-6.

Table 2-6 DTU service tiers

 Basic Standard Premium

Maximum
backup retention

7 days 35 days 35 days

CPU Low Low, medium, high Medium,
high

I/O throughput 1-5 IOPS per DTU 25 IOPS
per DTU

 Basic Standard Premium

I/O latency 5 ms (read), 10 ms (write) 2 ms
(read/write
)

Columnstore
indexing

Not
support
ed

Depends on
hardware
generation

Supported

In-memory
OLTP

Not supported Supported

2. Compute Tiers
The compute tiers define how the service is provided:

A. The vCore model has two computer options, defined in Table
2-7.

Table 2-7 vCore compute tiers

Option Description

Provisi
oned
compu
te

Specify an amount of computer resources assigned
that does not depend on workloads. In this case,
the pricing is calculated on a per-hour ratio.

Server
less
compu
te

In this case, resources are assigned based on
workload activity and the costs use a calculation of
compute unit/second.

B. The DTU model uses a table of different configurations to
calculate pricing, as shown in Table 2-8.

Table 2-8 DTU compute tiers

 DTUs Included storage Maximum storage

B (Basic) 5 2 GB 2 GB

Standard

S0 10 250 GB 250 GB

S1 20 250 GB 250 GB

S2 50 250 GB 250 GB

S3 100 250 GB 1 TB

S4 200 250 GB 1 TB

S6 400 250 GB 1 TB

S7 800 250 GB 1 TB

S9 1,600 250 GB 1 TB

S12 3,000 250 GB 1 TB

Premium

P1 125 500 GB 1 TB

P2 250 500 GB 1 TB

P4 500 500 GB 1 TB

 DTUs Included storage Maximum storage

P6 1 500 GB 1 TB

P11 1,75 4 TB 4 TB

P15 4 4 TB 4 TB

3. Hardware Generations
The hardware generations specify the combinations of hardware
and software provided, which, again, vary by purchase model:

A. vCore Based on sets of hardware combinations. Gen4 and
Gen5 are the most used, but new ones—like the Fsv2-series
(high CPU performance, less cost) and the M-series (memory
optimized with 29 GB per core, up to 128 cores; is not
available in all regions) are in preview.

B. DTU Each service level has subsets of hardware
configurations as per computer generations.

4. Elastic Pool
The elastic pool is a shared resource model. You have all your
databases in the pool, and they share the same set of resources.
Small databases, legacy migrated applications, and some software-
as-a-service (SaaS) can benefit from these scenarios and reduce the
TCO. There are different purchasing models for the vCore elastic
pool and the DTU elastic pool, so you can pick your best matching
flavor. It is important to consider elastic pools when, in a multiple-
database scenario, some databases are used more during different
periods of time than others. Then, the same pool of resources is
shared, and the final cost will be lower. At the same time, if your
processes require more resources at a single point in time, then the
elasticity concept continues to work. The resources are increased as
needed, and when the workload is completed, the resources are
reduced.

 Exam Tip

The generations, tiers, sizes, and prices vary with time. Check out the
current values here: https://azure.microsoft.com/en-
us/pricing/details/sql-database.

How to choose the appropriate service model
The process of choosing a service model is harder to define. You must
consider what you want to do with your data and, at the same time, how
easily you can estimate the resources you will need. Of course, cost is
another important factor.

The DTU service model is a fixed one. You will pay the amount of the
tier you purchase, and that’s all until you decide to change models (and
deciding which service model best fits the user needs will always be a
gamble). And DTU prices can be low in basic or even standard
configurations when compared with vCore.

On the other hand, the vCore service model allows you to refine more
precisely the resources you use, which can be a good option, depending on
the kind of work you perform with the databases. And, if you have
Microsoft Software Assurance (SA), you can use one of your SA licenses
with Azure Hybrid Benefit, which will decrease the cost (30-40 percent).

Finally, if you will need multiple databases, with significant usage
differences over time or between them, consider using elastic pools. The
databases share resources dynamically, which can reduce your costs.

Note Changing to another model

Notice all these choices are related to utilization and work, which
can vary with time. As you will see later in this chapter,
Microsoft Azure provides you with tools to evaluate your

https://azure.microsoft.com/en-us/pricing/details/sql-database

resources utilization, and at any time, you can change the model
level. And if you want to move a database to an elastic pool, you
can do that, even creating a new pool, directly from the database
in the Azure portal, or by using other tools.

Of course, changing a database to another model is not
instantaneous. You can expect 60–90 minutes per 100 GB of
data.

When you create a database, you need a SQL Server instance to manage
it. This means you must create a new SQL server the first time you define a
database, but later you can use the same one to manage other databases.
Also keep in mind that you can create more than one SQL Server instance.

To create an Azure SQL Database using the Azure portal, you must
select your subscription (you can have one automatically selected). Then
follow these steps:

1. Enter SQL Databases in the search area at the top of the page.
2. On the Resource page, click Add.
3. The portal shows a wizard with five tabs:

A. On the Basics page, you select your subscription and resource
group. You then enter a unique name for your database and
select a SQL server or create a new one (which we explain
later). When you begin typing the name, the page displays a
validation box helping you to enter an appropriate name, as
shown in Figure 2-7. After you select a server, you can specify
whether you want to use SQL Database elastic pools. A server
tier is already selected (General Purpose, Gen5, 2 vCores, 32
GB of storage), with a link to access your server configuration,
where you can select the appropriate one and see the estimated
costs at the same time.

B. On the Configure page, you can choose if the Azure SQL
Database server will be provisioned (set as default) or
serverless. There is a link to change the configuration for the

computer hardware, as well as other options, like vCores and
memory, with sliders to select the desired values. Changing
any of those values will update the cost summary at the right
of the page.

Figure 2-7 Database name validation

C. On the Networking page, you select the kind of connectivity
the database allows. With No Access, you must activate some
connectivity later to reach the server. When you choose Public
Endpoint, you can allow access from other Azure resources,
and you can add your current IP address to the firewall rules of
the server to connect to the database using the TCP/IP
protocol. Finally, if you select Private Endpoint, you must
create a private endpoint to connect with one of your
predefined private virtual networks in the same subscription
and region.

D. The Additional settings let you specify if you want to use
existing data, using a sample, or your own Azure backup, or
just create an empty database. Then, you can select the
collation for the database, and whether you want to activate
Advanced Data Security to receive vulnerability assessment
reports about your database.

E. On the Tags page, you can add or select the tags you want.
Tags are name/value pairs, used for billing consolidation, in
case you have a lot of resources to manage. You can define a
set of names for tags for all your resources and assign values
to the tags in each resource to filter the costs when you need
to.

F. On the Review And Create page, you see the complete
configuration for your database, including estimated costs, and
the Create button, which you click to complete the operation.

4. The page displays a validation list and then proceeds to create the
database. When the creation process ends, a result page appears,
with a link pointing to the summary page of the resource.

Note Using a new SQL server

To add a new SQL server when you are creating a database, click
the Create New link under the server selection drop-down list and
complete the required information. Again, during the input,
validation dialog boxes will appear indicating specific
restrictions. Figure 2-8 shows you the dialog box for creating a
new server.

Figure 2-8 SQL server creation parameters

Describe Azure Synapse Analytics
Azure Synapse Analytics is the online Microsoft OLAP platform, which
you can use to perform data analysis and manage huge volumes of
information from different points of view. This section describes the origins
of the platform.

SQL Server Analysis Services

Microsoft added a new service to its on-premises SQL Server bundle called
SQL Server Analysis Services back in 2000. Originally, the product was
based on the concept of multidimensional databases. A multidimensional
database uses a cube structure and dimensions to define the queries applied
to your data.

In Figure 2-9, the axis for the sky-blue color represents different dates,
the axis for the yellow color represents continents, and the red axis
represents different categories. Those are called the dimensions, whereas
the numbers in each small cube are called facts. Usually, a fact has one or
more measures, and the dimensions can have one or more hierarchies.

In our example, suppose you want to get information about tests
performed on June 14 in Europe. After you have that information, you want
to refine the query to look at Spain and Italy information only, and for
positive tests only. You find yourself navigating the hierarchies. Then, you
want to see not the quantity of positive tests but the average of real value of
the measures; you are looking at a measure.

A multidimensional cube obtains information from other data sources.
Many businesses have one or more OLTP databases, capturing information
every moment—in most cases, simultaneously from different entry points.
Having the analytical queries getting information from the databases at the
same time impacts the reliability and response time for the critical OLTP
operations. Because of that, you should consolidate your information in
separate databases. Usually, a cube is a revamped style to see the
information and does not exactly match the OLTP one. For this purpose, a
cube contains data sources, which define where and how to retrieve
information; views, to remodel the information in a better way to query it;
and processes, to obtain the fact results, including aggregation, and other
possible calculations. That explains why a cube must be processed to
recalculate the values and all the matching relationships with the
dimensions and their categories.

Figure 2-9 Cube structure representation

The final goal for a multidimensional cube is to have a single,
consolidated, and very fast source for queries.

Later, Microsoft added tabular models. The concept behind them is to
have in-memory storage to obtain information for the users fast.

The tabular model can be cached. In such a case, at process time the
information is gathered from relational databases, plain text, or other
sources. It is then compressed and kept in memory. By using DirectQuery
instead of Cached mode, you get up-to-date information from relational
databases at the query time.

Although DirectQuery is usually faster since data is already in memory,
Cached mode does not suffer the limit of RAM available in the system. In
both cases, the mission is the same: to give users preprocessed information
very quickly, avoiding delays and resource usage in the client computer.

After the information is imported (or the processes for importing
information defined), you can add relationships, measures, calculations,
hierarchies, or key performance indicators (KPIs) to get the information
ready to be consumed. However, be aware that DirectQuery mode poses
many limits on model extension, since the query is performed by the
underlying relational engine and not by the tabular model directly.

When the information definitions are ready, you can deploy the tabular
model to a SQL Server Analysis Services instance to be consumed by
users.

The same functionality is implemented in the cloud; originally it was
called SQL Datawarehouse (SQL DW). Later, Microsoft renamed it since
the services were modified and enhanced, with more features and different
paradigms for data analysis.

The idea is the same as with Azure SQL Database: having the same
service as you have on-premises available in the cloud, with different
purchase models and available resources, which can vary over time.

The most important difference is the limitless implementation due to the
Azure elasticity principle and the multiprocessing of the service.

In on-premises deployment, you must estimate the maximum resources
needed and purchase them to accomplish the work, even if you probably do
not need so much computing power all the time. Synapse uses a scale-out
model, which has the capacity to add more and more computing resources
on demand.

The information is stored in Azure Storage from a variety of sources, in
different formats, resulting in a large data store. Machine learning
algorithms, as well as other data analysis technologies such as Hadoop and
Spark, process and train the data to gain better results.

Then, using standard SQL queries through PolyBase, you can store the
information in Synapse tables (known as pool tables).

Need More Review? PolyBase defined

PolyBase is a component added to SQL Server that allows it to
query information from disparate sources, like Hadoop, Azure
Data Storage, Azure Data lakes, and even other database
technologies like MongoDB and Teradata. See
https://docs.microsoft.com/en-us/sql/relational-
databases/polybase for more detailed information.

The consolidation, analysis, aggregations, and queries are performed
using a set of computing nodes. When a user writes a query, it reaches a
Control node. This node, using a massive parallel processing (MPP)
engine, prepares the query for parallel processing and sends it to computing
nodes. In Figure 2-10 you can see a schematic of the MPP architecture.

https://docs.microsoft.com/en-us/sql/relational-databases/polybase

Figure 2-10 MPP architecture

Other techniques are working in the background. The data is spread into
distributions in Azure Storage. There can be up to 60 distributions. That
way, a query can be divided into up to 60 parallel queries, one for each
distribution.

You can choose the sharding pattern of the data:

A hash function slices the rows in several distributions, and only
one row belongs to a distribution.
Round-robin slices an entire table into chunks to be distributed to
several nodes.
Replicated tables maintain a copy of the table for each computer
node, and the parallel query is defined to get only a segment of
rows in each compute node.

Since several resources are involved, including computer nodes, storage,
and other services, when you need Azure Synapse you purchase a pool.

As with other Azure services, several performance levels are available,
and they are measured as data warehouse units (DWUs). You can see how
the DWUs are measured in Table 2-9.

 Exam Tip

The data warehouse unit is a measure based on CPU, memory, and I/O
values. The standardized combinations define service level objectives
(SLOs).

Table 2-9 Data warehouse units

DWU # of compute nodes # of distributions per node

DW100c 1 60

DW200c 1 60

DW300c 1 60

DW400c 1 60

DW500c 1 60

DWU # of compute nodes # of distributions per node

DW1000c 2 30

DW1500c 3 20

DW2000c 4 15

DW2500c 5 12

DW3000c 6 10

DW5000c 10 6

DW6000c 12 5

DW7500c 15 4

DW10000c 20 3

DW15000c 30 2

DW30000c 60 1

You must add the cost of Azure Storage (which varies depending on
capacity) to the DTU cost, but you can reduce costs by pausing Synapse
when you are not using it.

In any case, you probably will not need the entire set of resources the
whole time. You can dynamically and, even better, automatically, change
between SLOs depending on your workloads.

 Exam Tip

You do not need to memorize the sizes, tables, objectives, and so forth.
The exam evaluates concepts, not data.

To create a Synapse pool in the Azure portal, type Azure Synapse
Analytics in the Search box and select it from the results. Then follow
these steps:

1. On the Synapse page, click Add.
2. In the new SQL Pool Wizard, you will find four pages:

A. Basics As usual, you must select your subscription and
resource group. Then you must define a pool name, which will
be validated, and select or create a new server. The last option
on this page is the performance level; choose one of the
predefined SLOs.

B. Additional Settings Here you can define whether you will
start with an empty structure, use a backup from another
implementation, or even use a sample (in that case the pool
will contain a copy of the AdventureWorksDW sample). Then
you can configure the collation for the pool.

C. Tags As explained earlier, any resource can have tags assigned
for billing consolidation.

D. Review + Create Here you have the entire configuration
description, and you click Create to confirm the resource
creation. The portal will generate the template, send it to be
created, and display a page telling you that your deployment is
currently in the creation phase.

Describe SQL Server on Azure Virtual Machine
You may encounter situations where you need to be more precise than usual
or refine your SQL server under specific conditions. Or maybe you simply
need to upgrade your SQL server and you cannot update your applications
and must maintain your server under your on-premises network. Or perhaps
you have outer dependencies, such as a linked server, that need to be
created, or functionality not supported by SQL databases, SQL managed
instances, or other external services. Some circumstances may require you
to manage a SQL Server service on your own.

In those cases, you can implement your SQL server inside a virtual
machine (VM), hosted by Azure, and relay the hardware maintenance to
Azure Services. This is a perfect example of IaaS.

You will need three Azure Services to implement your SQL server
inside a VM:

Azure Storage, to contain the virtual disk(s)
Azure Virtual Network (VNet), for compute connectivity, which will
use Azure Firewall and allow you to create different styles of virtual
private networks (VPNs), in case you need tunneled connections
between your on-premises infrastructure and the server
The Azure Compute service, which will run the VM, acting as a
hypervisor

You can choose different virtual processor quantity, different memory
sizes, and different disk spaces available. The combination of them defines
the table of machine sizes.

Moreover, you have different hardware types to group them. Some use
HDDs, others use SSDs, some use 8 vCores and others 16, and so on.

Note Virtual machine sizes and types

The VM sizes change over time, and there are a lot of
combinations. Check this URL to get up-to-date information:
https://azure.microsoft.com/en-us/pricing/details/virtual-
machines/linux/#Windows.

Various purchase options are available for VMs. You can use the pay-as-
you-go option, which will bill you exactly for the used resources. Or you
may prefer the Reserved Virtual Machine Instances option, where you sign
on to use one or more VMs during a long period, up to three years, which
will decrease the cost up to 70 precent.

https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/#Windows

Finally, there is an option to purchase unused compute capacity when
your service does not need to be up and running at specific times or during
long periods. In this case, you take advantage of resources released by
others, until the Azure management system advises you will not have them
available anymore, which will be 30 seconds before the VM shuts down.

After you decide the size of your VM, you will need an operating
system for it as well as the specific SQL Server version you want to
implement. To make your decision easy, Azure gives you a large set of
operating system/SQL Server combinations to choose from so that you can
select the best match for your requirements. The operating system selection
includes different versions of Windows Server and different Linux
distributions.

 Exam Tip

You can see which combination of operating system and SQL versions
are available in a region by using the following PowerShell script:

Click here to view code image
Import-Module -Name Az
$Location='<Insert-your-desired-location-here>'
Connect-AzAccount
Get-AzVMImageOffer -Location $Location -Publisher
'MicrosoftSQLServer'

If you prefer, you can select only the operating system and install your
own licensed copy of SQL Server into the VM, once it is up and running.
Or you can just select one of the SQL Server VM presets, according to your
needs. You can also apply your own purchased license in order to reduce
costs in a pay-as-you-go purchase. Finally, you can use your own VM disk
image when you need to replicate several identical VMs or need specific
configurations, software, or other issues. You create your VM locally, and

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg075a

when it is ready, prepare it as an image, and then upload it as a custom VM
image.

Need More Review? Creating your own disk images

You can see details about creating your own image disk using
Deployment Image Servicing and Management (DISM) here:
https://docs.microsoft.com/en-us/azure/virtual-
machines/windows/capture-image-resource.

Another important feature allows you to shut down the VM at specific
hours to avoid consumption during unused times, such as late nights or
weekends.

Having your SQL server in a VM gives you some advantages, because
you are under the Azure Compute SLA:

Automated Updates Even when it is your own VM, you can
configure it to use Automated Patching to keep your operating system
and your SQL Server instances up to date. Only critical and important
updates are automatically installed.
Automated Backups The backup is for the entire VM as part of the
SLA for VMs, and for your databases, backed up to Azure Storage.
You take advantage of locally redundant storage (LRS), which gives
you three copies in the same datacenter, or geo-redundant storage
(GRS), which provides you with three more copies in another distant
datacenter.
Depending on the VM size selected, you can also have VM high
availability by redundancy.

Need More Review? Cost estimation tool

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/capture-image-resource

Remember, you can estimate your costs using the Azure
Calculator at https://azure.microsoft.com/en-
us/pricing/calculator/.

Table 2-10 is a sample result of a calculation.

Table 2-10 Sample of resource cost calculation

Servi
ce
type

Cus
tom
nam
e

Reg
ion

Description Estimat
ed
monthl
y cost

Virtu
al
mach
ines

SQL
VM

Nor
th
Eur
ope

1 A1 (1 vCPU(s), 1.75 GB RAM) x 730
Hours; Windows – SQL Server; Pay as you
go; 2 managed OS disks – E1, 100 transaction
units

$358.20

Supp
ort

 Support $0.00

 Total $358.20

The prices are only samples, since they change between regions and over
time.

To create a SQL Server VM in the Azure portal, you can search for
Virtual Machines if you want to set up just the operating system, or SQL
Virtual Machines, to get a VM with the database engine already
implemented.

Assuming you select SQL Virtual Machines, once you are on the SQL
Virtual Machines page:

1. Click Add. A new page will display the entire set of database
options, including the Virtual Machine option to the right.

https://azure.microsoft.com/en-us/pricing/calculator/

2. In the SQL Virtual Machine box, select from the drop-down list the
combination of operating system plus the SQL version you want to
deploy (you can see the configuration details by clicking the Show
Details link).

3. Click Create.
4. A wizard launches that has eight pages:

A. Basics Here you define all the principal characteristics of your
desired VM. You must select your subscription and resource
group, as usual. Then, enter a name for your virtual machine
and select the region, the availability options for redundancy,
the predefined image to create your server, the option to create
the machine (under the Spot option), the option to compute
when unused resources are available, and the size of the
virtual machine by selecting the desired one using the Select
Size link (which allows you to sort the virtual machine sizes
by any of the columns, including memory, computing, or
price). Finally, you must define the administrator user
credentials, entering the username, and then the password
twice.

B. Disks Here you select the disk type to host the operating
system—HDD, Standard SDD, or Premium SDD—and the
encryption type. Expanding the Advanced option, you can
disable the managed disks implementation if you want to
implement your own control over disks, in which case you
must select a storage account for storing the disks. Since using
managed disks enables fault tolerance, 99.99 percent SLA, and
more scalability, it is a good choice.

C. Networking Of course, your virtual machine must be
connected in some way. The Networking page allows you to
select or create a virtual network, define the subnet you want
to use, and declare whether you want to have a public IP. You
can disable the public IP only if you will connect to this VM
using a VPN. A NIC security group can be selected (by
default, a basic security group is already selected), as well as
an RDP port to establish Remote Desktop connections to the
virtual machine. By default, the standard RDP port, 3389, is

already selected. Depending on the image you want to use
during the virtual machine creation, you can enable
accelerated networking with low latency and high throughput.
Moreover, you can make this new VM part of a load balancing
pool.

D. Management Here you define how the Azure Security Center
interacts with the virtual machine; this feature can be
automatically enabled by the subscription. Under Monitoring,
you can define whether the Azure Security Center will record
diagnostics on boot and when the operating system starts and,
in that case, which storage account will be used. You can
assign a system identity (which allows the virtual machine to
identify itself to reach other Azure resources in the
subscriptions without further identification), and if the
machine can use Azure Active Directory logins, depending on
the image used in virtual machine creation. The last
configuration on this page is the auto-shutdown option, which
lets you define a specific time when the virtual machine can be
changed to offline, and whether a notification must be issued
before this, in which case, you must enter an email address
where you want notifications to be sent.

E. Advanced Here you can add extensions to your operating
system installation, such as monitoring or antivirus agents.
You can enter custom data for the operating system so you can
send information to the virtual machine, which will be stored
in %SYSTEMDRIVE%\AzureData\CustomData.bin as a binary
file for Windows (which must be processed by some code
written by yourself at start-up), or in /var/lib/waagent for
Linux, which can be managed by Linux Agent. If an enterprise
has a contract to reserve physical servers dedicated to
subscriptions, you can select the host group and proximity
placement group.

F. SQL Server Settings Here you define how the SQL server
will be contacted by clients. You can specify whether to allow
only connections from the virtual network, only inside the
virtual machine itself, or from the internet. In any case, you

have to define a port, which is assigned 1433 by default. You
can configure specific authentication methods like SQL
Authentication or Azure Key Vault. The database storage is
automatically assigned to disks other than the operating
system. You can change the storage configuration, selecting a
main storage type (between OLTP and OLAP styles), and then
modify the disk capacities and drive assignments. (By default,
the data goes to one disk, the logs to another, and the TEMP
DB uses the operating system disk.) Here you have the chance
to assign your own SQL license, configure a patching window
(which is a time each week when the operating system and
SQL server engine could be updated), and the backup
automation process as well.

G. Tags Any resource can have tags assigned for billing
consolidation.

H. Review + Create Here a final validation is performed; then
the wizard displays all the configuration information and
leaves you to create the virtual machine by clicking Create.

If you look at Figure 2-11, you’ll notice several resources are used to
create a virtual machine. Besides the obvious VM itself, and disks to store
the operating system and data, you must create a network interface and use
it to support the virtual network, which will expose a public IP address and
will be controlled and audited by a network security group. A storage
account is required to store the virtual disk files, and the Schedule will
manage the shutdown automation feature.

Figure 2-11 Virtual machine resources

Describe Azure Database for PostgreSQL, Azure
Database for MariaDB, and Azure Database for
MySQL
Other than Azure SQL Database, there are other relational storage options
available in the Azure platform. When compared with SQL Database, each
has differences and similarities, and some of them can be used as a
migration platform from on-premises storage. In this section, you will find
details about these storage options.

Azure Database for PostgreSQL
PostgreSQL is part of the relational workload offering in Azure.
PostgreSQL is an open source, object-oriented database, and it began life in

Berkeley as the PostgreSQL project in 1986. It runs on top of all the most
important operating systems, and it has reached ACID compliance since
2001.

PostgreSQL uses standard data types, plus document and geometry data,
and gives you the ability to create composite elements and your own
custom types. As a relational database, it implements primary and foreign
keys, relationships, constraints, and uniqueness of keys. It implements
extensibility by stored procedures and functions, which could be written in
a proprietary language, PL-PGSQL, but also in other languages like Perl
and Python. As a database engine supporting documents, it implements
SQL/JSON path expressions and updates.

Several open source tools are enabled to work with this database engine,
like Ruby on Rails, Python with Django, Java with Spring Boot, PHP,
C#/.NET, and Node.js. You can extend the database engine by using any of
the available extensions, which enhance the ability of the database to
resolve specific problems, such as address standardization, the distance
calculator on GIS data, and text search without accent marks.

PostgreSQL can easily scale out without any manual sharding, even to
hundreds of nodes. Because it is an open source implementation, you can
use Hyperscale (Citus), an open source project in GitHub to scale out in
Azure and distribute queries across multiple nodes.

Later in this chapter, we will talk about data tools. For some of them,
extensions exist to work with PostgreSQL and manage snippets,
connections, and queries.

To create a PostgreSQL database in the Azure portal, type Azure
Database for PostgreSQL servers in the Search box and select it from the
results. When you click Add, you are given two options: create a single
server, or create a Hyperscale server group (based on Citus).

1. If you decide to use the single server option, you’ll see the
following:

A. Basics Select your subscription and resource group; then enter
a server name, and select the region and the PostgreSQL
version. Then select the storage, where you can configure

vCores, storage space, auto-grow, and backup retention.
Finally, enter the administrator credentials.

B. Tags Any resource can have tags assigned for billing
consolidation.

C. Review + Create Here Azure performs a validation and
makes available the Create button, which you click to
complete the operation.

2. If you configure a Hyperscale server group, the wizard will display
the following:

A. Basics After selecting the subscription and resource group,
you must enter a unique name for the server group and select
the location. Then, you must configure the compute and
storage for the server group, defining how many worker nodes
you want, how many vCores you want, and storage by node
(all the nodes must have the same configuration). Another
node must be configured that will act as a coordinator,
receiving client requests, relaying the worker nodes, and
grouping the results. Again, you must configure vCores and
storage. Finally, you can enable High Availability. The admin
username is fixed as citus, but you must enter an appropriate
password for it.

B. Networking Here you can enable access via a public endpoint,
which will use firewall rules to enable connectivity by IP and
allow enabling access from other Azure services.

C. Tags As with any other resource, you can add your own tags
here.

D. Review + Create After a final validation, the configuration
summary is displayed and you click Create to finish the
operation.

 Exam Tip

PostgreSQL High Availability must be requested by subscription prior
to being enabled in a server group.

Figure 2-12 represents the resources implied in a PostgreSQL
deployment.

Figure 2-12 PostgreSQL server group diagram

Azure Database for MariaDB
Azure Database for MariaDB is another open source database you have
available to implement in order to cover a relational workload. It is based
on versions 10.2 and 10.3, and you can get the documentation at
https://mariadb.org/.

The engine enables high availability, scaling easily in a short time,
automated backup procedures, and secure implementation for sensitive
data.

https://mariadb.org/

Running on Azure, the implementation cost can be estimated based on
the pay-as-you-go purchasing model. Three standard pricing tiers are
available:

Basic Includes one or two vCores, 2 GB of memory per core, 5 to
1,000 GB of storage
General Purpose Includes 2 to 64 vCores, 5 GB of memory per core,
5 to 4,000 GB of storage
Memory Optimized Includes 2 to 32 vCores, 10 GB of memory per
core, 5 to 4,000 GB of storage

As usual, you can start your implementation with a Basic tier, evaluate
resources utilization, and scale according to your needs.

Note The storage only scales up

You can scale up and down in the pricing tier, but the storage will
always be scaled up.

As an alternative, reserved capacity can be prepaid, by one to three
years, which will reduce the price.

Azure Database for MariaDB covers different security areas:
SSL/TLS enabled in all communications by default
Automatic storage encryption, using a FIPS 140-2 cryptographic
module
IP firewall rules
Virtual network firewall rules
Optional auditing
Optional threat protection

Azure Database for MariaDB can be used by the most important
development languages, since it uses the same drivers as MySQL. There
are drivers for the following:

PHP
.NET
Node.js
Go
Python
Java

To create an Azure Database for MariaDB in the Azure portal, type
Azure Database for MariaDB servers in the Search box and select it from
the results. On the Azure Database for MariaDB Servers page, click Add to
launch a wizard with three pages:

1. Basics Here you select your subscription and resource group, and
then enter all the configuration information required, including the
name you want to use for the server, whether you will start with an
empty database or get a backup, the location, and the MariaDB
version. Then, configure the Compute + storage, which includes
Backup Redundancy options for General Purpose and Memory
Optimized tiers, allowing you to keep redundant backup copies in
local or geo-distributed locations. Finally, enter the administrator
credentials.

2. Tags You can add your own tags here.
3. Review + Create After a final validation, the configuration

summary is displayed and you can click Create to create your
MariaDB database.

Note MariaDB is not only the database

Azure Database for MariaDB is implemented by the creation of a
virtual machine or a container to run the engine.

Azure Database for MySQL
Azure Database for MySQL is the cloud implementation by the Microsoft
platform for the MySQL Community edition
(www.mysql.com/products/community/). The Azure implementation allows
you to choose version 5.6, 5.7, or 8.0, and enables the database with almost
no administration tasks.

As MariaDB, the engine enables high availability, scaling easily in a
short time, automated backup procedures, and secure implementation for
sensitive data.

MySQL supports features like replication, partitioning, routing, and
other features directly related to relational database implementations, such
as views, stored procedures, and triggers.

Three standard pricing tiers are available:
Basic Includes one or two vCores, 2 GB of memory per core, 5 to
1,000 GB of storage
General Purpose Includes 2 to 64 vCores, 5 GB of memory per core,
5 to 16,000 GB of storage
Memory Optimized Includes 2 to 32 vCores, 10 GB of memory per
core, 5 to 16,000 GB of storage

You can scale up and down, but only between the General Purpose and
Memory Optimized tiers. However, you can scale up and down within the
Basic tier (and the other tiers as well) without changing the tier. You can
scale up, but not down, in storage.

As for prices, you can request prepaid reserved capacity for one to three
years. If you have an Enterprise subscription, you can enable prepaid
reserved capacity in the Azure portal. In other cases, like individual
subscriptions, you must ask for prepaid reserved capacity from a sales
agent.

Speaking of security, the same features you find in MariaDB databases
are available for Azure Database for MySQL (MariaDB is a branch from

http://www.mysql.com/products/community/

the original MySQL development).
If you want to create an Azure Database for MySQL, at the top of the

Azure portal type Azure Database for MySQL servers in the Search box
and choose it from the results. Once you are on the MySQL page, click the
Add button. The wizard is exactly like the wizard for MariaDB and asks for
the same parameters.

Describe Azure SQL Managed Instance
For those customers who need a migration tool for numerous applications
without risks, or independent software vendors (ISVs) wanting to move
their entire platform to SaaS in Azure, Microsoft offers Azure SQL
Managed Instance (SQL-MI). Sometimes, there are applications with a
couple of databases needed in the same instance but with many jobs that
must be executed against them. This could be another use for SQL-MI.

This is a special Azure SQL implementation, prepared to serve as a new
location for large on-premises datacenters, based on the latest SQL Server
Enterprise Edition versions. These include all the services related to an
implementation to provide service to your large data storage moved to the
cloud.

Since you could have several databases you have to migrate, special
options in the Azure Database Migration Service allow you to define the
entire process and test it before implementation. When the test is
successful, you can use the tool to proceed with the production migration.

Note Migrating your data with DMS

Azure Database Migration Service (DMS) is a multifunctional
assistant you can use to migrate on-premises databases to Azure
relational workloads for any of the technologies and database
services we describe in this chapter.

You can prepare your migration plan and start it when you are
ready to change your environment. When you need a continuous
migration path, you can use a Premium tier, which has an hourly
cost, applied using four vCores. Using the Standard level is free,
but that allows only offline migration, which means taking your
database offline during the migration process.

The following is a partial list of the most important features covered by
SQL-MI:

Automatic software patching
Built-in instance and database monitoring and metrics
Latest database engine features
Managed automated backups
Multiple number of data files per the database
VNet - Azure Resource Manager deployment

Two service tiers are available:
General purpose Use High-Performance Azure Blob storage, with an
8 TB limit. The data and log files are stored directly in a blob
repository.
Business Critical Uses local SSD storage, up to 1 TB or 4 TB,
depending on the server generation used, with Always On availability
groups, read-only database replica, and OLTP in memory support.

 Exam Tip

Always On availability groups is a SQL Server solution implemented
for high availability and recovery. It uses a Windows Server Failover
Cluster and implements replicas between the members of the cluster.

The replicas can be asynchronously committed when long distances
must be covered, but usually the synchronous method is used.

You have a lot of metrics to consider when designing an Azure SQL
Managed Instance implementation, and the resource limits vary over time,
since new sizes, ranges, and functionality will be added progressively. We
recommend that you measure the actual on-premises implementation and
use Azure Calculator to evaluate the best combination for your needs. Once
the SQL-MI is implemented, a frequent follow-up of resource usage can
help refine the implementation.

Building a SQL-MI is a process that takes time. Several steps, each one
with long-running processes, must take place. Table 2-11 gives you an idea
about the tasks and their duration.

Table 2-11 Timetable for long processes in SQL-MI implementation

Action Time

Virtual cluster creation Up to 4 hours

Virtual cluster resizing (adding nodes) Up to 3 hours

Instance compute scaling up/down Up to 3 hours

Database seeding/Always On seeding 220 GB/hour

Other operations, such as attaching a database from Azure Storage, take
only a few minutes. However, consider the time you may need to upload
the files (or the data management system needed to upload the files).

SQL-MI is PaaS. That means the management of the hardware,
software, updates, maintenance, and so forth is the responsibility of
Microsoft. As such, the customer does not have direct access to the servers
using RDP or any other protocol.

Of course, you will need to perform some “administrative” tasks, such
as creating a new database or choosing a different storage space or
computer combination. However, you will only be able to perform all those
tasks by using the Azure portal or the other general management tools you
will see later in this chapter, such as the CLI, PowerShell, or other
mechanisms for process automation.

All the operations you issue must use the Tabular Data Stream (TDS)
application layer protocol, which means using SQL statements to store or
retrieve data. The connection between customer applications and the
managed instance must be through the virtual network itself, via a virtual
machine connected to the same virtual network, or through a VPN or Azure
ExpressRoute connection. As you will see during the setup procedure, you
can configure a connection endpoint, but it is only for data and cannot be
used for management.

At any rate, all the communications are encrypted and the internal
communication between the parts of the managed instance is encrypted and
signed using certificates. The communication with Azure external services
like Azure Key Vault and Azure Active Directory are encrypted and signed
as well.

To create a SQL-MI in the Azure portal, type SQL managed instances
in the Search box and select it from the results. Click Add to open a wizard
with the following pages:

1. Basics Select your subscription and resource group. Then enter the
instance name, select the region, configure the compute and storage,
and enter the administrator credentials. The constraint rule for the
administrator password in this case is stronger; it requires at least
16 characters.

2. Networking The SQL-MI requires a virtual network, and it offers
to create a new one for you, or you can select one from your already
created VNets. However, the creation process needs to modify the
VNet configuration, asking if it should make the changes
automatically or guide you in the process of doing it yourself. You
must select a connection type (proxy or redirect), which affects how
applications connect to the SQL-MI. Finally, you can opt to enable

a public endpoint, which will be used only for data communication
when you need it without using a VPN.

3. Additional Settings Here you can select the collation and the time
zone for the SQL-MI, which cannot be changed after
implementation. Also, you can add SQL-MI during the creation
process as a secondary failover for an existing SQL-MI.

4. Tags As with any other resource, you can add your own tags here.
5. Review + Create After the validation, the page displays your

configuration, the estimated cost, and the top limit for the creation
process in hours.

After creation, virtual networks, network security groups, route tables,
and the virtual clusters will be added to the resource group. Figure 2-13
shows the resource involved in a SQL-MI deployment.

Figure 2-13 SQL-MI base resources

Skill 2.3: Identify basic management tasks
for relational data

All the relational data services must be deployed, managed, and secured in
order to perform most efficiently. And sometimes, problems will appear,
and you will have to identify and fix them. Moreover, you will probably
have to retrieve and update data.

This skill covers how to:
Describe provisioning and deploying relational data services
Describe method for deployment including ARM templates and
Azure Portal
Identify data security components (e.g., firewall, authentication)
Identify basic connectivity issues (e.g., accessing from on-
premises, access with Azure VNets, access from internet,
authentication, firewalls)
Identify query tools (e.g., Azure Data Studio, SQL Server
Management Studio, sqlcmd utility, etc.)

Describe provisioning and deploying relational
data services
Now that you have an idea of the various relational workloads Azure
provides, let’s look at the reasons that could make you decide to move to an
Azure solution and how to select the option that best fits you.

Cost. This is probably the most important reason. Of course, if you
make an investment in hardware and software, you want the best return on
it, but what if you need to migrate or upgrade your implementation? If you
consider hardware, software, and maintenance, security, redundancy, and
reliability, you may find that moving to Azure is the best choice.

Think about the pros and cons of the available options. If you do not
need your relational workload up and running all the time, IaaS will
probably be a better choice than PaaS, since you can shut down your
unused server and bring it back when needed. However, having SQL Server
on a virtual machine will require more management effort from your team.

In this section, we analyze the measures and tiers used to estimate
service costs, based on DTUs, vCores, and tier levels, among other factors.
Note that there are other costs to consider. One is network traffic; all
inbound traffic is free, but any outbound traffic over an initial free amount
will be billed.

Also, the costs vary per region. Table 2-12 shows some of the
differences, with prices as of June 2020.

Table 2-12 Comparative costs in network traffic between regions

 Dollar per GB

Ratio US Europe Korea South Africa

First 5 GB Free Free Free Free

5 GB - 10 TB $ 0.087 $ 0.087 $ 0.120 $ 0.181

10 - 50 TB $ 0.083 $ 0.083 $ 0.085 $ 0.175

50 - 150 TB $ 0.070 $ 0.070 $ 0.082 $ 0.170

150 - 500 TB $ 0.050 $ 0.050 $ 0.080 $ 0.160

Over 500 TB Ask Ask Ask Ask

Service level. Having a reliable platform is cost intensive. Having your
databases in PaaS gives you 99.99 percent SLA, whereas IaaS gives you
99.95 percent. The difference between IaaS and PaaS can be covered if you
perform some additional tasks, such as adding a second virtual machine
instance or implementing SQL Always On to ensure availability.

Administration. PaaS will reduce the time your team dedicates to
manage your relational infrastructure, since most of the work is performed
by Azure management. On the other hand, you must consider other possible
issues using some of the services.

Let’s look at a probable case: if you have some CLR procedures, they
are not available in PaaS at all. If you must keep them implemented, your
choice must be IaaS (or SQL-MI).

Something similar happens with OPENROWSET, OPENQUERY, file
streams, cross database queries, and so forth.

Migration path. This is about opportunity as well as procedure. You
must select the best time to perform a migration, depending on your needs
and the way you do it.

Let’s see some examples:
You have a web application using information of a database, or more
than one, not interconnected. You can easily change the connection
string in the web application.
Moving to PaaS would probably be the best choice, using Data
Migration Assistant or another tool to move data quickly and change
the connection string only at the end of the movement.
Your application uses different databases, where you need to update
information in more than one of them at the same time, and uses
cross-database references, using fully qualified object names
(<database>.<schema>.<object> nomenclature) to perform the
queries. Or your database uses external binary storage to enhance
document management, allowing you to use the binary storage from
outside the database.

In these cases, you are limited to using IaaS to keep it running. There
will be an initial platform preparation, where you define and create one or
more virtual machines in IaaS, and then plan and execute the migration,
exactly in the same way you can use migration to a new on-premises server.

Which SQL Server flavor to use

When you move your data to the cloud, it is important to choose the best
implementation for your needs. Here are some guidelines to help you
decide which is the best option in different cases.

Azure SQL Database. As PaaS service, Azure SQL Database frees you
of the administrative and maintenance tasks, ensures you 99.99 percent
SLA, automates backup procedures, and can grow vertically on demand.

You can define a single database, which is a concept similar to the
contained database used in SQL Server 2012 version. The idea is to have
fewer dependencies on the underlying server. The metadata, the user access
security, and statistics are isolated from the server.

The authentication in this kind of database, including Windows
Authentication, is managed by the database without server participation.

Of course, logins from SQL Server can be allowed to reach the
database, but this diminishes the “containment” of the database itself.

If you want reduce costs, you can choose a serverless implementation,
with more fine-grained cost-per-use billing and the ability to automatically
stop the resource usage when you are not using the database. Alternatively,
you could use Hyperscale for higher performance; a large database, up to
100 TB; an almost instantaneous backup; quick restore; and rapid scaling
(out and up), all applied to a single database. A scenario for this could be an
implementation where you have just one database requiring all these special
abilities and other databases with significantly fewer requirements. You can
define each one as a single database and refine the configuration for each
one.

Azure SQL Managed Instance. As we discussed earlier, for big servers
with several databases, datacenters, and ISV providers, SQL-MI can be a
good choice to automate movement from on-premises to the cloud. A set of
SQL servers with high availability, replication (local and geographically
dispersed), and clustering based on Always On features gives you the
reliability and availability you need. If you will have cross-databases
queries, that is another reason to use SQL-MI.

SQL Server on Azure VM. This IaaS service is your choice when you
need fine-grained control over service configuration, maintenance, and
patching; you have to move the SQL server from on-premises to the cloud

without making any changes in your database or application; you have CLR
code inside your database; or you will be using inter-database queries or
linked views. Another scenario is when you are preparing a test or
development environment for database design before moving it to a
production environment. In a three-layer implementation, you can provide a
SQL Server on a virtual machine to your development team and have a
staging and production environment using other Azure SQL Database
options.

In any case, Azure hands you a very good set of tools to see what is
happening with your relational database workloads, measure them, and
refine the design of your environment.

Moreover, you can resize, and scale up or scale down at any time,
automatically based on resource consumption or according to your own
schedule based on your personal experience of your application and
database usage.

Describe method for deployment including ARM
templates and Azure Portal
When we described the various storage options, we explained the step-by-
step procedures for deploying them. However, you can choose among other
deployment methods and, even better, automated deployment. In this
section, we discuss these methods in detail.

Another visit to the Azure portal
Let’s review the Azure portal and then the relational workload creation
process.

When you go to the Azure portal at https://portal.azure.com, you are
prompted for your credentials (personal or company). After you enter your
credentials, the portal’s main dashboard will appear (or the default home
page, if you have already configured it). You see the information for one or
more subscriptions. The subscription is your root point of entry for all your
Azure resources.

https://portal.azure.com/

In the top-right corner of the page, to the left of your username and icon,
you will see some icons. The icon that looks like a notebook with a funnel
lets you select your subscription(s), as you can see in Figure 2-14.

Figure 2-14 Azure portal subscriptions selector

A new subscription displays an empty dashboard, allowing you to add
elements you want to keep under control any time you visit the portal.
Figure 2-15 shows how the dashboard looks when no resources have been
created in a new account.

Figure 2-15 Azure Portal default dashboard

In the ribbon at the top of the page, the Search box appears, where you
can search for anything you need to use or create.

The Resource group concept. At the beginning, Azure links the
different resource implementations directly to the subscription, with no
option to have any resource outside a subscription (which is still the case).
However, some customers claim it is almost impossible to manage the

consumption by different cost areas. Big enterprises need a clear
understanding of which departments are using which resources and the cost
of their operation. Worst is the situation for ISV providers moving to the
cloud to provide their services directly from Azure. How can they calculate
the costs for billing each customer? Those are the basic reasons to have
resources linked, not for permissions granting or connectivity, but just to
manage and relate costs. Those groups are called resource groups.

Most resources in Azure must be linked to one—and just one—resource
group, but there are some specific resources that can exist outside of
resource groups, belonging to the tenant, a management group, or the
subscription. You can have several resources under the same resource group
umbrella, even resources of different kinds, but there is no option to have a
resource in more than one resource group. You can move a resource from
one resource group to another, if you need to.

The resource group controls all its resources and collects information
about all of them as well. You can filter or group the information collected
by the resource group.

 Exam Tip

Remember, the resource group manages all the resources. If you
decide to remove the resource group (for instance, when an ISV
removes a customer), all the resources belonging to the group will be
removed without any restore option.

Practice Creating an Azure SQL database

Note Reducing the billing costs of your practices

Follow this procedure and, at the same time, you will be creating
a database for future practices. This procedure’s parameters will
create the least expensive database possible, and with the Auto
Disconnect option, you can avoid using resources when you are
not accessing the database.

If you do not have a resource group already created in your subscription,
create one. Use DP-900 as the resource group name to follow along with
this step-by-step procedure. Use the values in Table 2-13 as a reference for
the practice.

Table 2-13 Default parameters

Tab Parameter Value

Basics Subscription Must specify the subscription you are
using. If you have more than one, you
can change it here.

 Resource Group DP-900
 Database Name DP900_1
 Server Create a new server, with an

appropriate unique name, admin
username, and password of your
choice.

Tab Parameter Value
 Compute + Storage Click the Configure Database link and

select:

Serverless

Max vCores = 1

Min vCores = 0.5

Enable auto-pause in 1 hour

Data max size = 6 GB

Netwo
rking

Connectivity Method Public endpoint

 Allow Azure Services
And Resources To
Access This Server

Enabled

 Add Current Client IP
Address

Enabled

Additi
onal
setting
s

Use Existing Data Sample

 Collation SQL_Latin1_General_CP1_CI_AS
(Note this cannot be changed using
sample data.)

 Enable Advanced Data
Security

Start Trial

EXERCISE 2-1 Create relational data services
Most of the creation wizards follow the same user interface:

1. Basics are grouped in:
A. Project Details You select the subscription and resource

group.
B. Service Details This includes database details, pool details,

and other information specific to the service you are creating:
name, region, size, and other configurations.

2. Networking Allows you to define the connectivity of the service.
You also define network security, such as whether to allow access
from other Azure resources to this one, firewalls, VPNs, and so
forth.

3. Additional Settings Here you can initialize the service, define
service parameters, and enable additional components.

4. Tags Here you assign grouping information.
5. Review + Create This is where the final validation happens and

you confirm the service creation.

You have already seen how to create service instances for most of the
relational data services. Let’s explore the Azure SQL database in detail and
see what happens after it is created.

After the wizard has created the database, you receive a message telling
you that your deployment is complete and instructing you to go to the
resource. If you return to your dashboard, you will see three new resources,
as described in Table 2-14.

Table 2-14 Resources created for an Azure SQL database

Resource Name

The SQL database DP900_1

The SQL server Your server name

A storage account An autogenerated name

Note Your databases must be stored

Of course, creating a storage account is not required. However,
you need it to maintain your database files, and that is the reason
the account is created.

If you click the database name, which is a link, the portal navigates to a
page with database information. Figure 2-16 shows the Overview page of a
database.

It is important to understand that the server name is a fully qualified
domain name (FQDN), in this case,
dp900sqlserver.database.windows.net, and must be unique. Azure
automatically generates this name using your server name and adding
database.windows.net to complete the FQDN. That explains why you
must use a unique name for your server so that it will not be confused with
another server.

One important link on this page is Show Database Connection Strings.
The link sends you to a page with several connection string examples for
different development technologies like ADO.NET, JDBC, ODBC (which
includes Node.js), PHP, and Go.

Figure 2-16 Azure SQL database overview

In the left menu bar, you have links such as Activity Log, Tags, and
Diagnose And Solve Problems. In another section of the left menu, you
have Settings, which include Configure (including making changes to the
server status, specifying Hyperscale or Business Critical, and moving the
database to another tier), Geo-Replication, Sync To Other Databases,
Properties, and Locks.

Other sections include Security, Monitoring, Support, and
Troubleshooting.

Azure Resource Manager (ARM) templates
The Azure portal is an excellent tool for creating almost any Azure service,
but what if you must create more than two or three services each time? This
is something an ISV provider or an Azure Service provider must do
repeatedly. For those cases, there are automated procedures. You can use
Azure Resource Manager (ARM) to perform your administrative tasks.
ARM is the service that uses the portal to perform the tasks. The actions
and parameters you choose are sent back to ARM for the portal to get the
work done. Figure 2-17 shows the ARM building blocks. As you can see,
the portal is just a user interface.

Figure 2-17 Azure Resource Manager schema

ARM uses resource providers to manage the various resources in Azure.
The resource providers encapsulate all the necessary elements to perform
the actions against services, configuration validation, other resource needs.
Microsoft.Storage and Microsoft.Compute are two examples of resource
providers.

The resource providers are configured by subscription. Follow these
steps to see the resource providers available for your subscription and how
to manage them:

1. Navigate to https://portal.azure.com/#allservices.
2. In the Search box, type Subscriptions and click the Subscriptions

link.

https://portal.azure.com/#allservices

3. Select the desired subscription.
4. In the left menu bar, under the Settings group, click the Resource

Providers option to display a list of all the providers. To enable one,
just select it and click the Register button at the top of the list. The
provider will appear as “Registering,” as you can see in Figure 2-
18, and after a few minutes, it will be available.

Figure 2-18 Enabling a resource provider

You can unregister a service provider, but only when no resource
managed by the provider is in use.

 Exam Tip

You need the appropriate permissions to manage resource providers,
which are automatically active in Contributor and Owner roles.

Having resource providers available is the basis for having a declarative
way to define resources: ARM templates. ARM templates are files with
JavaScript Object Notation (JSON), describing the service intended to be
created or managed. Using a template, you can define in detail the
combination of resources and their configuration, with parameters for
specific values, such as names and resource groups. The following code
details the basic schema for an ARM template.
Simplified schema for an ARM template
Click here to view code image

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg096a

{
 "$schema": "https://schema.management.azure.com/schemas/2019-
04-01/
deploymentTemplate.json#",
 "contentVersion": "",
 "apiProfile": "",
 "parameters": { },
 "variables": { },
 "functions": [],
 "resources": [],
 "outputs": { }
 }

Table 2-15 describes the most important entries in an ARM template and
indicates which of them must be present.

Table 2-15 ARM schema definitions

N
a
m
e

M
a
n
d
a
t
o
r
y

Description

$s
ch
e
m
a

✓ Define the specific schema for the template. The schema allows
the editors to perform validation of the definitions in order to
avoid mistakes. Only those parts defined in the schema can be
used, and only in the proper places.

Different schemas are defined for different uses.

For general resource management, apply the /2019-04-
01/deploymentTemplate.json# schema (for some editors, only a
previous version, 2015-01-01/deploymentTemplate.json#, is
allowed).

For tenant management, you must use /2019-08-
01/tenantDeploymentTemplate.json#.

For management administration, /2019-08-
01/managementGroupDeploymentTemplate.json#.

For subscriptions, /2018-05-
01/subscriptionDeploymentTemplate.json#.

All the schemas’ URLs start with
https://schema.management.azure.com/schemas.

co
nt
en
tV
er
si
on

✓ This is the version for the entire template, with any value you
desire (a “1.0.0.0” format is recommended).

Later on, when you deploy using this template you can check if
you are using the proper version.

https://schema.management.azure.com/schemas

ap
iP
ro
fil
e

 With this element, you can define which API version will be used
for all the service providers, without having to add the version to
each one. Any service provider declaration without a version will
use this value by default.

pa
ra
m
et
er
s

 Here you declare which parameters the template expects to use in
order to customize the deployment. You will see this in detail in a
moment.

va
ri
ab
le
s

 These are value containers used by the template during
deployment. An example is when you define a SQL server name
for a database; when you create the SQL Azure database, you may
have a variable where you concatenate the database name (which
could be a parameter) with a fixed string like “server” to build the
server name.

fu
nc
ti
on
s

 Typically, you can use functions for complex evaluations or
expressions. There are some limitations for function declaration—
for example, all the parameters for a function must be mandatory
(they cannot use default values), and no function can call another
function. The syntax expressions are simple but useful in some
cases.

re
so
ur
ce
s

✓ This is the specific section for resource deployment declarations.
We will discuss this in a moment.

ou
tp
ut
s

 This is a set of values the deployment execution must return, such
as the list of resources deployed, with or without more details for
each one.

Now, let’s dive deeper into the details.
Parameters Used to define placeholders for values that you want to
assign during the deployment process (see Table 2-16).
Parameters schema

Click here to view code image

"parameters": {
 "<parameter-name>" : {
 "type" : "<type-of-parameter-value>",
 "defaultValue": "<default-value-of-parameter>",
 "allowedValues": ["<array-of-allowed-values>"],
 "minValue": <minimum-value-for-int>,
 "maxValue": <maximum-value-for-int>,
 "minLength": <minimum-length-for-string-or-array>,
 "maxLength": <maximum-length-for-string-or-array-
parameters>,
 "metadata": {
 "description": "<description-of-the parameter>"
 }
 }
 }

Table 2-16 Properties for parameters

Name Man
dato
ry

Description

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg098a

Name Man
dato
ry

Description

type ✓ This is the expected data type for the parameter.

Must be one of the enabled data types in this list:

string

securestring

int

bool

object

secureObject

array

defaul
tValue

 The value to assign to the parameter, when one is not
received

allowe
dValu
es

 This is an array with the accepted values for the
parameter. If this property is assigned, only matching
values are permitted.

minVa
lue

 The minimum value accepted for an int parameter.

maxV
alue

 The maximum value accepted for an int parameter.

Name Man
dato
ry

Description

minLe
ngth

 The minimum length for a string, secure string or array
parameter type

maxL
ength

 The maximum length for a string, secure string or array
parameter type

metad
ata

 It permits comments to the parameter. The accepted one is
“description”, as a string value.

“description”: “<description-of-the parameter>”

Resources This is the most important section of the ARM template; it
contains the definition of the resources you want to deploy.
JSON schematic for the Resources section of the ARM template

Click here to view code image

"resources": [
 {
 "condition": "<true-to-deploy-this-resource>",
 "type": "<resource-provider-namespace/resource-
type-name>",
 "apiVersion": "<api-version-of-resource>",
 "name": "<name-of-the-resource>",
 "comments": "<your-reference-notes>",
 "location": "<location-of-resource>",
 "dependsOn": [
 "<array-of-related-resource-names>"
],
 "tags": {
 "<tag-name1>": "<tag-value1>",
 "<tag-name2>": "<tag-value2>"
 },
 "sku": {
 "name": "<sku-name>",
 "tier": "<sku-tier>",

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg099a

 "size": "<sku-size>",
 "family": "<sku-family>",
 "capacity": <sku-capacity>
 },
 "kind": "<type-of-resource>",
 "copy": {
 "name": "<name-of-copy-loop>",
 "count": <number-of-iterations>,
 "mode": "<serial-or-parallel>",
 "batchSize": <number-to-deploy-serially>
 },
 "plan": {
 "name": "<plan-name>",
 "promotionCode": "<plan-promotion-code>",
 "publisher": "<plan-publisher>",
 "product": "<plan-product>",
 "version": "<plan-version>"
 },
 "properties": {
 "<settings-for-the-resource>",
 "copy": [
 {
 "name": ,
 "count": ,
 "input": {}
 }
]
 },
 "resources": [
 "<array-of-child-resources>"
]
 }
]

Table 2-17 describes the Resources section of an ARM template.

Table 2-17 Details of the Resources section of an ARM template

N
a
m
e

M
a
n
d
a
t
o
r
y

Description

c
o
n
d
it
i
o
n

 This true/false value indicates whether this resource must be
deployed. Imagine an ARM with several resources and some of
them disabled, depending on a parameter condition.

t
y
p
e

✓ The type of the resource. This entry must be defined with one part
by the resource provider, which is called the namespace; a slash;
and the name of the resource you want to create, such as
Microsoft.Sql/servers/databases.

a
p
i
V
e
r
s
i
o
n

 This is the version for the REST API you want to use. Usually, the
version is a date in IS0 8601 format (yyyy-mm-dd). It can be
extended by some other data, such as the last REST API version
for databases (2019-06-01-preview). If no value is provided, the
value for the apiVersion property for the entire template will be
used.

n
a
m
e

✓ The name of the resource you want to create. This name has some
restrictions. It must be defined as an URI, following the RFC3986
specification, since it could be exposed publicly and must match
the rules. Moreover, during the resource deployment, a process will
validate the uniqueness of the name inside Azure and out of the
Azure boundaries, if it will be exposed publicly.

c
o
m
m
e
n
t
s

 Just for your documentation.

l
o
c
a
ti
o
n

Several resources, but not all, require the geographical location.

Obviously, this is a value that you will prefer to match with the
same location of other resources, in the same subscription and
resource group, or to match other resources that will communicate
frequently with this new one.

Just as an example, you can define the location as parameter in
your ARM template and set its default value to be the same as the
one from the resource group:

Click here to view code image

"defaultValue": "[resourceGroup().location]"

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg101-01aa

d
e
p
e
n
d
s
O
n

 Sometimes, you will use the same ARM template for deploying
several resources. If this resource needs other resources declared in
the ARM template to be created before it is, you can declare them
here as a comma-separated list of resource names or resource
identifiers.

This attribute is used to indicate other resources in the same ARM.
Other resources, external to the template, must be created before
this template is executed, since the ARM cannot check for them
outside the boundaries of this execution.

The deployment process analyzes the dependsOn attribute for all the
resources defined, and sorts them to first create those without any
dependency (in parallel), and then, to follow the dependency
chains to end the deployment without failures.

t
a
g
s

 An array with the desired tags and their values for this resource, in
the following format:

{
 "<tag-name1>": "<tag-value1>",
 "<tag-name2>": "<tag-value2>"
}

s
k
u

 The stock-keeping unit defines the specific version or style for the
resource you want to create. For example, in a database, you can
define the version and tier like this:

{
"name": "S0",
"tier": "Standard"
}

k
i
n
d

 Here you can define other resource specifics. Some resources
require this value for their definition

c
o
p
y

 When you need more than one instance of the same resource, you
can use the copy attribute to define the amount, name, mode, and
parallelism of the deployment with this structure:

Click here to view code image

{
"name": "<name-of-copy-loop>",
"count": <number-of-iterations>,
"mode": "<serial-or-parallel>",
"batchSize": <number-to-deploy-serially>
}

p
l
a
n

 Some of the resources have predefined plans, like virtual machines.
In those cases, this is where the configuration property is assigned.

p
r
o
p
e
rt
i
e
s

 In this attribute, specific values for the resource are defined. Each
resource will have its own schema. For example, creating a SQL
database will have these properties:

Click here to view code image

"properties": {
"collation": "string",
"createMode": "string",
"sourceDatabaseId": "string",
"sourceDatabaseDeletionDate": "string",
"restorePointInTime": "string",
"recoveryServicesRecoveryPointResourceId": "string",
"edition": "string",
"maxSizeBytes": "string",
"requestedServiceObjectiveId": "string",
"requestedServiceObjectiveName": "string",
"elasticPoolName": "string",
"readScale": "string",
"sampleName": " string ",
"zoneRedundant": "boolean"
}

r
e
s
o
u
r
c
e
s

 Here you define resources that depend on this one to be created.
This is the inverse of dependsOn, but more specific to certain
situations, like virtual networks, subnets, and network policies.

As you can see in Table 2-17, there are many different combinations,
values, and so forth in an ARM template. Most resources have their own
variations, and it is impossible to know all of them.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg101-02a

Luckily, there’s a shortcut. For any resource creation process, on the last
page you have a link to download the generated ARM template. Moreover,
you can get the template for an already created resource.

Looking at any resource page, in the left toolbar in the Settings group,
you have a link to export the template and get its definition. If we take the
template for our already created SQL database, we get approximately 160
lines of code. (See the source code sample Ch2-SQLDatabase-
ARM.json.)

The following is the parameters section from that file. You can see how
the name of the server has been defined and a default value assigned.
ARM parameters section of SQL database sample
Click here to view code image
 "parameters": {
 "servers_dp900sqlserver_name": {
 "defaultValue": "dp900sqlserver",
 "type": "String"
 }
 }

If you look at the line
Click here to view code image
"name": "[concat(parameters('servers_dp900sqlserver_name'),
'/DP900_1')]",

you will notice that the name argument for the database creation is fixed to
the name we assigned when we created it: DP900_1. However, it would be
better if the database name could be assigned by parameters as well. So we
add a new parameter to the parameters section with the following code:
ARM parameter for database name added
Click here to view code image
 "parameters": {
 "servers_dp900sqlserver_name": {
 "defaultValue": "dp900sqlserver",
 "type": "String"
 },

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg102-1aa
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg102-2a

 "database_name": {
 "defaultValue": "DP900_1",
 "type": "String"
 }
 },

And we change line 19 to use the new parameter:
Click here to view code image
 "name": "[concat(parameters('servers_dp900sqlserver_
name'), '/',parameters('database_name'))]"

These changes will not work, since other changes are required for
applying the database name properly. Review the entire template, locate the
appropriate places, and make the changes. You will probably identify other
information that could be assigned by parameters. Of course, you have a
solution in Ch2-SQLDatabase-ARM_Modified.json.

Practice Using an ARM template in the portal
After you have an ARM template ready, you can launch a deployment
based on it. You can type template deployment in the Search box of the
Azure portal or navigate to the Create Resource hub at
https://portal.azure.com/#create/hub and select Template deployment
(deploy using custom templates).

1. When you click Create, Azure displays a list of links with useful
information.

2. Click the “Build your own template in the editor” link. A template
editor appears.

3. You can type your template from scratch or load a previously saved
one by clicking the Load File button. The editor will display the
segments in the tree to the left of the page, and the number of
elements in each one, similar to what you can see in Figure 2-19.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg102-3a
https://portal.azure.com/#create/hub

Figure 2-19 ARM template editor tree

4. When you click Save at the bottom of the page, you are taken to the
Purchase page (you are about to purchase one or a group of
resources by applying the template).

5. On the Purchase page, you must select the resource group if the
resources defined in your template require you to. Text boxes will
appear for every parameter with default values, allowing you to
enter the desired values. Enter the server name you already created
in the previous practice and enter DP900_2 as the database name.

6. After the database is created, navigate to the database Overview
page. There is no need to keep this database active, so you can
delete it.

Need More Review? Complete ARM schema

You can find detailed information about ARM template syntax at
https://docs.microsoft.com/en-us/azure/templates/.

https://docs.microsoft.com/en-us/azure/templates/

Using PowerShell to manage deployment
Azure has many APIs for use with PowerShell. We will not cover them in
detail here, but we will look at the elements necessary to perform relational
databases deployments.

To work with Azure from PowerShell, you need to install the az
extension, a new library that replaces the old one, AzureRM. You can still use
AzureRM but keep in mind that it will be deprecated and you will miss some
of the new features.

To ensure you have the right extension, you can execute the following
PowerShell code, which is included in the companion content as Install az
Module.ps1:
Check previous version and install az PowerShell extension

Click here to view code image
$version=$PSVersionTable.PSVersion.ToString()
if($version-lt'5.1.0'){
 Write-Warning -Message ('az Module requires Powershell version
5.1 or higher.'+
 ' Your version is $version. '+
 'Go to https://docs.microsoft.com/en-
us/powershell/scripting/install/installing-
powershell to install the latest version')
}
else {
 if ($PSVersionTable.PSEdition -eq 'Desktop' -and (Get-Module -
Name AzureRM
-ListAvailable)) {
 Write-Warning -Message ('Az module not installed. Having
both the AzureRM and '
+
 'Az modules installed at the same time is not
supported.'+
 'Follow the instructions at '+
 'https://docs.microsoft.com/en-
us/powershell/azure/uninstall-az-ps?view=azps-
4.3.0#uninstall-azure-powershell-msi'+
 'to remove it before install az Module')
 }
 else {
 Install-Module -Name Az -AllowClobber -Scope CurrentUser

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg104-1a

 }
}

The az module requires at least PowerShell version 5.1—that is the first
check the script executes. Then, if you have the appropriate version, this
script checks whether you have the AzureRM extension and, if you do,
indicates where you can find the steps to remove it.

Finally, if all the conditions are met, the script installs the module.
With the module installed, you can use this code, which you can find in

the Deploy ARM Template To Resource Group.ps1 file.
Code to deploy an ARM template using PowerShell

Click here to view code image
 Param (
 [Parameter(Mandatory=$false,HelpMessage='Name for the
Deployment Process')]
 [string]$Name,
 [Parameter(Mandatory=$false,HelpMessage='Resource Group
where you want to
execute the Template')]
 [string]$ResourceGroup,
 [Parameter(Mandatory=$false,HelpMessage='path and file
name for the template
[C.\folder\filename.josn]')]
 [string]$TemplateFile,
 [Parameter(Mandatory=$false,HelpMessage='Database
Name')]
 [string]$database_name,
 [Parameter(Mandatory=$false,HelpMessage='Location')]
 [string]$database_location
)
#Before any Azure action, you must authenticate yourself to connect
with Azure Platform
Connect-AzAccount
#Get the subscriptions belonging the authenticated user
$subscriptions=Get-AzSubscription
if ($subscriptions.Count -gt 1) #If there are more than one, allow
the user to select
the subscription
{
 $resp=0

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg104-2a

 while($resp -lt 1 -or $resp -gt $subscriptions.count)
 {
 $counter=1
 foreach($s in $subscriptions)
 {
 Write-Host $counter,$s.Name
 $counter+=1
 }
 $resp=Read-Host 'Please select your desired subscription'
 }
 Set-AzContext $subscriptions[$resp-1]
}
Define a Parameters Object, which is a hash-table in PowerShell
$paramObject = @{
 'database_name' = $database_name
 'database_location' = $database_location
 }
#Execute the deployment
New-AzResourceGroupDeployment -Name $Name `
 -ResourceGroupName $ResourceGroup `
 -TemplateUri $TemplateFile `
 -TemplateParameterObject
$paramObject

The script starts by defining the parameters and asking you to enter the
values. Then, it connects to Azure, asking for your credentials. The next
step is to activate the subscription (in case you have more than one). If not,
by default the single subscription is activated. Then, a hash table with the
parameters you want to send to the template is defined. Finally, the script
executes the deployment.

Using Azure CLI to manage deployment
Azure CLI (command-line interface) is another method you can use to
manage Azure from your desktop. You can install Azure CLI in Windows,
Linux, or macOS and have the same functionality. Look for the latest
version and installation instructions here: https://docs.microsoft.com/en-
us/cli/azure/install-azure-cli.

After you install Azure CLI, open a command prompt (cmd) window.
Alternatively, you can use PowerShell or Windows Terminal with Azure

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli

CLI. In Linux, you can use the Bash shell; for macOS users, PowerShell is
a good option.

Once in the console, you must connect to Azure. Type the following
command in a cmd or PowerShell window:
Az login

This command opens your default browser, where you log in. Once you
do, Azure CLI displays a list of your subscriptions.

Then, you can use a command like the PowerShell command. The most
important difference is the fact that the parameters must be passed one by
one:
Click here to view code image
az deployment group create --name <Name_of_the_Deployment> --
resource-
group <Resource_Group_name> --template-file <Path_and_File_name>
--parameters
<ParameterName_1>=<Value_1> <ParameterName_2>=<Value_2>

If you want to create a new database named DP900_2 in the same
region and subscription, the command looks like this:
Click here to view code image
az deployment group create --name NewDep --resource-group "DP-
900" --template-
file "Ch2-SQLDatabase-ARM_Modified.json" --parameters
database_name=DP900_2 database_
location=northeurope

You can use Azure CLI directly from the portal, where you will are
already authenticated, by using Cloud Shell. In the very top bar in the
Azure portal, to the right near your user identification, you see some icons.
We talked about those icons earlier in this chapter when we discussed
subscription selection. The leftmost icon in that mini toolbar is Cloud Shell.
When you click it the first time, a panel at the bottom of the portal page
appears, where you must select your shell environment preference, either
Bash or PowerShell. You can change it later, from inside the Cloud Shell,
but you must choose a shell environment to start.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg106-1a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg106-2a

Next, you will be asked to select a subscription where Cloud Shell will
create a store area (a storage account) for use by the shell. When you select
the subscription, Azure will create the storage account with an
autogenerated name.

Note Establish your customized storage place

You can click the Advanced settings link to define your resource
group, location, and custom names for the storage account and
file share.

In this case, the shell will not have access to your local drive, so you
must upload your template somewhere in Azure. That is one of the reasons
you have created a file share.

1. In the portal, locate the storage account created for your Cloud
Shell. If you used the default configuration, it will be named cloud-
shell-storage-<region>.

2. Click the Containers tile.
3. Once in the Containers list, click the Container button to add a new

container.
4. Type a name (Templates is a good choice) and select the access

level. Notice that setting the access level as Private will not allow
Cloud Shell to read the content, so you must choose another option.
You can choose private access, but you must ensure that you have
read anonymous access for each file inside the container.

5. After the container is created, click Upload to add your template.
6. To use a template from the container, click the ellipsis at the right of

the file and select Properties. In the resulting panel, copy the file
URL.

 Exam Tip

The Cloud Shell configuration creates the storage account and a file
share. However, you cannot use a file share to store your templates,
since the store sends the files in it in a different way. You should create
a container that delivers the content in binary format.

With the template in the Azure storage, you can use the same az
command you used in the CLI Shell but change the template-file
parameter to template-uri with the URL you copied from DP900_2 as its
value.
Click here to view code image
az deployment group create --name <New_Deploy_name> --resource-
group "<your_
resource_Group_name>" --template-uri
"https://<yourcloudshellstorage>.blob.core.
windows.net/<Your_Container_Name>/<ARM_TemplateFileName>.json" --
parameters database_
name=<Database_name> database_location=<Location>

Identify data security components (e.g., firewall,
authentication)
Securing your information is one of the most important concerns in storing
data in the cloud. Azure implements a multilayer security structure to
protect your information from nonauthorized access, represented
graphically in Figure 2-20.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg107a

Figure 2-20 Data secure layers

Information protection
These are the methods Azure uses to secure your information at a storage
level:

1. Physical Encryption The information physically stored is
encrypted by default. This ensures that even in the very rare case
someone could reach the physical storage they will not be able to
read it.

2. Azure SQL Database and Azure SQL Managed Instance These
apply Transparent Data Encryption (TDE) using the Advanced
Encryption Standard (AES) algorithm, which is applied directly to
each database creation process. The algorithm uses an automatically

generated certificate, which is rotated as needed, and there is no
need to manage it from your side. If you prefer to use your own
certificates, you can manage them in Azure Key Vault. This
approach is useful if you need to separate the database
administration responsibilities from the security area.

Need More Review? Using your own encryption key

To get a deeper understanding of securing the data with
your own certificates in Azure Key Vault, read about Bring
Your Own Key (BYOK) at https://docs.microsoft.com/en-
us/azure/azure-sql/database/transparent-data-encryption-
byok-overview.

3. Always Encrypted You can configure at a column-level encryption
for sensitive data, which includes any personal information. Doing
so is a requirement for some scenarios and/or countries that have
laws protecting personal data. Or you may just want to secure the
information, such as credit card numbers in e-commerce site
databases. The encryption occurs on the client side, so any database
administrator accessing the data will not be able to read the always
encrypted columns as plain text. Since the encryption/decryption
process occurs at the driver level, the executing application needs
access to the certificate store to be able to perform the tasks. The
store could be a local store such as the certificate store for a user, or
a computer, or a remote storage like Azure Key Vault. You perform
the always encrypted configuration using an administrative tool for
SQL Server, and the information about the certificates key pairs is
stored in the database itself.

4. Dynamic Data Masking Another feature you can apply to data is
the ability to mask out part of the information in certain columns,
such as credit card numbers, based on some rules and permission
levels. You can apply different masks—even a custom mask—by

https://docs.microsoft.com/en-us/azure/azure-sql/database/transparent-data-encryption-byok-overview

column to display only part of the information to users. Members of
allowed roles could see all the information, but the rest of the users
would always get the masked version. Even better, when some user
wants to “investigate” data by filtering rows by masked columns,
the information displayed will always be nonspecific.

Threat protection
Azure provides the following methods to help you avoid threats and protect
your data:

Azure Monitor logs and Event Hubs Audit SQL Database, SQL
Managed Instance, and Azure Synapse can be configured to enable
auditing at a database or a server level. This way, you can trace any
actions against the database. You can send the auditing results to a
storage account (Blob storage), or use a couple of auditing services
like Event Hub or Log Analytics, where you can get statistics directly
from Azure. However, using Event Hub requires you to have some
stream procedure to capture the events. To configure the auditing, go
to the desired database in the Azure portal and, in the Security group
in the left toolbar, click the Auditing option. There you can select
your repositories (you can select more than one) and configure the
properties for each one.
Advanced Threat Protection This feature analyzes every
communication with your database and is capable of sending alerts
under specific situations, such as possible SQL injection, a failed
login, a login attempt from an unusual domain, unusual export
location, and so forth. In addition to the alerts, you can analyze the
information collected by exploring the alerts in the Azure portal. The
Advanced Threat Protection feature is part of the Azure Security
Center, where you can see the security alerts of all the resources in
your subscription. To configure the Advanced Threat Protection
feature, you must select the desired database, and under the Security
group in the left toolbar, click Advanced Security.

Access management

Azure provides various procedures that you can use to allow access to your
resources:

1. Authentication Access to data resources requires identification of
the users—that is, authentication. SQL Server Database, SQL
Managed Instance, and Azure Synapse use two kinds of
authentication methods:

A. SQL Authentication With this method, the users are
registered in a database/server location, and it is the engine
itself that performs the user identification. At least one
administrator user exists, which is created during the database
creation process. It is a good practice to define one or more
different users to perform the daily tasks, reserving the
administrator user for management work only.

B. Azure Active Directory authentication With this method, the
user must be recognized by Azure Active Directory, which can
be synchronized with your on-premises Active Directory, in
case you have a hybrid back end. The Azure SQL Server and
Azure Synapse infrastructure allows the login creation from an
external provider. The user could be logged in with three
Active Directory authentication methods:

Active Directory - Universal with MFA support when you
require multifactor authentication (MFA) for the user.
Active Directory – Password, so the user has to enter the
Active Directory login name and password.
Active Directory – Integrated, using the same SID
assigned to the current user logged in to the client computer.
Using this authentication method allows you to define
security boundaries by Active Directory groups, by creating
SQL logins for the group, instead for users one by one. This
way, the Active Directory administrators could assign or
revoke access permissions, managing the group
memberships directly.

2. Authorization Once the user accesses the database, you can
manage the access levels for the users and groups by using the
standard procedures for SQL Server databases, by adding them to

database roles, or by granting specific permissions to some users.
Here you apply the same best practices recommended for
permissions management, especially if you enable Active Directory
authentication. Leave the membership in the Active Directory side,
and grant permissions to the Active Directory groups account. This
way, the security team can easily manage the permissions in Active
Directory, in just one step, without having to administer the
database security each time.

Practice Enabling Azure Active Directory authentication
In this practice you will allow access to certain Active Directory users and
configure their permissions.

If necessary, download and install SQL Server Management Studio
(SSMS) from here: https://docs.microsoft.com/en-us/sql/ssms/download-
sql-server-management-studio-ssms.
EXERCISE 2-2 Connect to your database

1. Click the Show Database Connection Strings link in the
Overview page of your database. Look for the ADO.NET
connection string.

2. Copy the server argument from the connection string.
3. Open SSMS, and when it prompts you to connect to a database,

paste the copied server argument; then select SQL Authentication,
enter a username and password, and click Connect.

4. Once you are connected, expand the Server Name node, expand
Databases, and select the DP900_1 database.

EXERCISE 2-3 Add the Active Directory account to administer your
database

1. In your database Overview page, click the server name, which
sends you to the Overview page of the server.

2. Under the Settings group in the left toolbar, click the Active
Directory admin option. This will allow you to define one
administrator from Active Directory that will control the logins for

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms

other users in the future (this account must query Active Directory
to look for validation and group memberships).

3. Click Set Admin and, from the user list, select the user you want to
assign as administrator for the Active Directory authorizations to
the SQL server. You must select an account that does not belong to
Microsoft public domains, like outlook.com, live.com,
Hotmail.com, or onmicrosoft.com (@<Your Domain
Name>.onmicrosoft.com).

4. Click Save and wait for the process to end.

EXERCISE 2-4 Add group or user accounts

1. Go to SSMS and connect to the database using the Active Directory
admin user assigned in Exercise 2-2 with the Azure Directory -
Password authentication method.

2. Expand the tree and, with your database selected, click New Query
in the toolbar, or right-click the database and select New Query
from the context menu.

3. Type the following statement to create a new user for the database.
This will create a contained user for the database, not a server user.
CREATE USER [<Azure_AD_principal_name>] FROM EXTERNAL
PROVIDER;

Note Avoiding syntax errors in SQL Server conventions

Since the @ symbol is used for variable identifiers in SQL
Server, you must enclose the username within brackets. You can
use the same syntax to add an Active Directory group toenable
access to all its members.

Network security

http://outlook.com/
http://live.com/
http://hotmail.com/
http://onmicrosoft.com/

The next security layer is designed to protect network communications and
uses the following elements:

1. Firewall In several wizards you have seen in this chapter, an option
appears for adding the client IP to the network security. This is the
automated mechanism Azure uses to ensure your computer accesses
the database. The firewall configuration is for the SQL server, not
for each database. On the Overview page of your SQL server, click
the Show Firewall Settings link. You can then view, add, and
remove rules for specific IP addresses or IP ranges. We recommend
that you limit the ranges as much as possible to avoid intrusions.
The automated IP address is added when you create the resource.
Or if you click the Add Client IP Address button, use a
nomenclature like ClientAccess<Date and Time>. We suggest that
you rename the client access you created to easily identify it by
user. By doing so, you will know who is connecting to each server.
You can include VPN IP ranges to facilitate the connection from the
on-premises location or via VPN-connected users.

2. Virtual networks On the same page where you configure firewall
rules, you can configure granted access for virtual networks from
any subscription you have access to. During the selection process of
the virtual network, you can select a specific subnet by name or
address prefix.

Identify basic connectivity issues (e.g., accessing
from on-premises, access with Azure VNets, access
from internet, authentication, firewalls)
Sometimes, you will have to resolve issues with database connections. The
issues depend on general failures or misconfigurations, or they are transient
failures, like those generated by changes in the deployment, such as
automatic updates, upsizing or downsizing, or similar actions. You must
take different actions for transient faults than you do for other issues, since
you can take preventive actions for the first group but must fix the issues
for the second.

Here are common issues and how to fix them or (for transient faults)
how to be prepared to react to them:

1. A network-related or instance-specific error occurred while
establishing a connection to your server. This is an error the
application could throw. Usually there is something wrong in the
connection between the application and the database. The most
common reasons are:

A. The connection string is not using the right protocol, which is
1433. Check the connection string in the application and
compare it with the standard one that you see in the
Connection Strings link on the Overview page of your
database in the Azure portal.

B. The connection is not configured to use TCP/IP. The unique
communication protocol enabled in Azure SQL Database is
TCP/IP. Check to make sure it is enabled by using
cliconfg.exe in the client computer.

C. A timeout occurs for the connection. Sometimes, low-velocity
internet connections can cause the connection to break by
timeout. If you look at the predefined connection string, it sets
the timeout to 30 seconds, which used to be enough. However,
you can increase this setting if necessary.

D. Connection issues not related to the database engine occur.
Check low-level connectivity issues by using network
diagnostics tools. Or simply try to connect from other
computers and locations to identify the problem.

E. A firewall has blocked the IP. As we describe later, the server
firewall must have the IP in a “white list” of the client IPs
allowed to connect. Ensure that it does. Remember that the
public IP address can be changed by the internet provider
unless a fixed IP is assigned to your external point of
connection.

2. Cannot open database “master” requested by the login. The
login failed. This error appears when a connection is established
with no default database. If the user connecting is the admin user
for the SQL server, they can reach the master database. However,

other users can be created as contained users and they will not have
read rights in the master. To fix this issue, you must establish the
default database, which you can usually define directly in the
connection string. If the issue appears when you are trying to
connect from SSMS, you must define the default database in the
Connection Properties tab in the Connect To Database dialog box
(click the Options button to open this dialog box). Take a look at
Figure 2-21.

Figure 2-21 SSMS Connection Properties

3. Unable to log in to the server. This is an
authentication/authorization error. Besides the obvious typing errors
for the username or password, or the absence of the specific
account, if the login is a SQL account, an administrator must query
the sys.logins table of the master database if the account has not
been disabled (maybe for several mistyped attempts). In that case,
you can enable the account again. If Azure Active Directory
authentication is in use, the security could depend on AD changes,
movement of the user from a group, or the fact that there is no AD
account for the user, or any group the user belongs to, that allows
the user to reach the database. You can use the following code to
look for a username status:
Search the user for disabled account

Click here to view code image
DECLARE @username VARCHAR(100);
SET @username = '<type_the_user_name_here>';
SELECT name,
 is_disabled
FROM sys.sql_logins
WHERE name LIKE '%' + @username + '%';

4. Resource errors. The Azure SQL Database, Azure Synapse, and
other database deployments are defined with certain limits in size,
memory, vCores, and so forth. If some of the limits are reached,
specific errors will raise errors about long-running transactions or
high-consuming queries; interlocks will be raised as well. The
administrator must evaluate these issues and take the appropriate
steps to remedy them.

Need More Review? Finding overused resources

For detailed information about the most common resources
overuse errors, go to https://docs.microsoft.com/en-

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg113a
https://docs.microsoft.com/en-us/azure/azure-sql/database/troubleshoot-common-errors-issues#resource-governance-errors

us/azure/azure-sql/database/troubleshoot-common-errors-
issues#resource-governance-errors.

5. Transient faults. As already described, these are failures that
happen during short periods of time, usually a few seconds,
generated by some change in the SQL server/database side or by
some unpredicted events in the database. These situations could be
mitigated preventively by issuing specific procedures to check them
and retry the connection. You can do this by establishing the
connection in a retry loop until the maximum number of tries is
reached or the connection is successful. The transient errors are
limited to a small list of error codes. You can check the error codes
in the Number property of the SQLException when an application
tries to establish a connection, and then retry in only one of the
transient errors and raise the error in any other.

Need More Review? Searching for transient errors

You can get the list of transient error codes, and learn how
to define the code to manage them, at
https://docs.microsoft.com/en-us/azure/azure-
sql/database/troubleshoot-common-errors-issues#transient-
fault-error-messages-40197-40613-and-others.

Identify query tools (e.g., Azure Data Studio, SQL
Server Management Studio, sqlcmd utility, etc.)
Usually, the databases will be accessed from custom applications and
websites. However, there are many administrative tasks or other situations

https://docs.microsoft.com/en-us/azure/azure-sql/database/troubleshoot-common-errors-issues#resource-governance-errors
https://docs.microsoft.com/en-us/azure/azure-sql/database/troubleshoot-common-errors-issues#transient-fault-error-messages-40197-40613-and-others

where you need a tool to execute queries against the database. The
following is a brief overview of the most important tools.

Query Editor
On the Overview page of your database, in the left toolbar, is a link to the
Query Editor, which when activated, will ask you for credentials to connect
to the database.

Note This is a preview component and could change

As of this writing, the Query Editor is a preview version.
Therefore, you might notice some changes between what is
explained here and what you see.

After you open the editor, it displays a tree to the left, where you can see
the objects (tables, views, procedures) in your database. To the right, you
have a window in which you can type your query. In this window,
IntelliSense is available to help you pick objects names such as table
names, but there is no drag-and-drop functionality from the tree to the
editor. A toolbar at the top of the editor allows you to run the query, cancel
it, save it, or export the result to a CSV, JSON, or XML file.

When you click the Run Query button, the result appears at the bottom
of the editor, using a table format, in a tab titled Results. Another tab,
Messages, allows you to see other information about the query, such as the
quantity of rows obtained or error or warning messages.

Finally, another Show button in the toolbar enables you to change the
elements displayed between the editor and the result (Show all), only the
editor Show only Editor), or just the results (Show only Results).

Sqlcmd utility

This command-line utility is a lightweight utility used to execute queries.
Historically, sqlcmd was one of the first query tools for SQL Server in its
initial versions. However, the tool is not a legacy one. The latest versions,
starting with 13.1, can use Azure AD authentication, including the MFA
method; can execute most of the queries you want; and are capable of using
fully encrypted communication during the entire session.

Note Download the sqlcmd tool

You can download sqlcmd for 64x platforms at
https://go.microsoft.com/fwlink/?linkid=2082790 and the same
tool for x32 platforms here: https://go.microsoft.com/fwlink/?
linkid=2082695.

To use the tool, open a command prompt in your operating system, and
execute sqlcmd with the appropriate information about server,
authentication method, and credentials:
Click here to view code image
sqlcmd -S <server_name>.database.windows.net -d <database_name> -U
<user-name> -G

Once connected, the utility allows you to enter one or more T-SQL
statements and execute them by typing GO to finish the batch. The results
will appear in the same window. You must type quit to exit the application.
Table 2-18 describes common switches for sqlcmd.

Table 2-18 Common switches for sqlcmd

Switch Use for

-C Trust Server Certificate

-d Database name

https://go.microsoft.com/fwlink/?linkid=2082790
https://go.microsoft.com/fwlink/?linkid=2082695
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg115a

Switch Use for

-E Use trusted connection

-g Enable column encryption

-G Use Azure Active Directory for authentication

-H Hostname

-l Login timeout

-N Encrypt Connection

-P Password

-q "cmdline query"

-Q "cmdline query" and exit

-S Server

-t Query timeout

-U Login id

Keep in mind that sqlcmd is case sensitive, so the switch -D is not the
same as -d and will not work.

Azure Data Studio
This is an open source application that can be used on Windows, Linux, or
macOS. Since it is open source, you can get the code and modify it to
address your specific needs. The license does not allow you to redistribute
your changes hosting your version in the cloud.

The tool is multilingual and configurable, and you can enhance it by
installing extensions available from Microsoft and other authors.

Note Latest version of Azure Data Studio

You can download Azure Data Studio at
https://docs.microsoft.com/en-us/sql/azure-data-studio/download
and the source code from here:
https://github.com/microsoft/azuredatastudio.

Once installed and launched, Azure Data Studio displays a welcome
page with the most used start actions such as connecting to a database or
opening a file.

To connect to your database, click the Open Connection link. This will
display a window to the right, asking you for the connection parameters
(see Figure 2-22).

Figure 2-22 Azure Data Studio Connection Details window

https://docs.microsoft.com/en-us/sql/azure-data-studio/download
https://github.com/microsoft/azuredatastudio

When you complete the required information for the connection and
click the Connect button, the connection will be saved. You can add a
specific name to the connection to easily identify it later.

The dialog box has an Advanced button. Click it to define other
connection properties, such as Connection Timeout and Asynchronous
Processing.

Using Azure Active Directory will require you to add the account you
want to use, rather than asking for username and password. When you add
the account, you will be redirected to an Azure login page, and the account
will be added to the Azure Data Studio if the authentication is successful.

Once connected, Azure Data Studio displays information about the
database, including Edition, Pricing Tier, and a list of the objects in the
database, as you can see in Figure 2-23.

Figure 2-23 Azure Data Studio database information

As you can see in Figure 2-23, a toolbar at the top of the database
information area allows you to create a new query or a new notebook

(explained in a moment), perform a backup or a restore (in preview as of
this writing), and other tasks.

When you create a new query in the query window, you will have
IntelliSense support for database objects, as you can see in Figure 2-24.

Figure 2-24 IntelliSense in Azure Data Studio

After you execute the query, the results appear as a table at the bottom
of the window, and a second tab, as in the Query Editor in the Azure portal,
displays messages and information about the execution.

Note T-SQL syntax helper with IntelliSense

In addition to the IntelliSense for tables and views, Azure Data
Studio offers IntelliSense for column names. We will talk about
the SQL syntax later in this chapter.

Azure Data Studio can connect and query PostgreSQL databases as
well. It can be a valuable tool when you are working with different data set
technologies at the same time. It is possible to install just the PostgreSQL
extension.

Since Azure Data Studio is an open source development, it is possible
we will have more language support in the near future.

Another interesting feature is the ability to manage source control using
GIT repositories, so you can administer versioning, sharing, and all the
features GIT repositories have from the tool directly.

The Notebook concept. One of the great features Azure Data Studio
provides is the Jupyter Notebook support. Jupyter stands for three
programming languages: Julia, Python, and R. The Jupyter Notebook can
mix text, graphics, and code in the same notebook, enhancing the reader
experience. Later in this chapter you will see the SQL syntax in detail and
will use a notebook as a set of samples to explore the experience.

The original notebook was developed for mixing text with Python code,
but the functional concepts implied the use of an interface or kernel to
process the language. It was just a matter of time before more kernels, like
SQL Server, began using the same principle.

SQL Server Management Studio
SSMS is the tool SQL Server DBAs use for database administration and
maintenance and developers use to design objects and queries and analyze
the behavior of queries and optimize them. This tool used to be part of the
SQL Server installation media until it was revamped as an independent
download to enable its use, precisely, to manage Azure SQL Databases. It is
the official tool from Microsoft.

Note Latest version of SQL Server Management Studio

You can download SSMS here: https://docs.microsoft.com/en-
us/sql/ssms/download-sql-server-management-studio-ssms.

Like Azure Data Studio, SSMS allows you to connect to several servers
in different locations. We already discussed connecting to databases using
SSMS in this chapter, but let us review the procedure here.

After you open SSMS, the application asks you to connect to a database:
You must use the server data, including the protocol (tcp:) and the port
(:1433), in the ADO.NET connection string you defined in the
Connection Strings link of your database page in the Azure portal.

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms

Then, choose the authentication method and enter the appropriate
credentials.
If the user is a contained database user, you must enter the database
name in the Connection Properties tab. See Figure 2-21 for an
explanation of the same step.

SSMS is more than a query executor. With it, a DBA can manage
security, administrative tasks, maintenance tasks, and so forth. Some of
these tasks are not enabled for Azure databases, since they are
automatically performed by the Azure platform, but the tool has more
functionalities to enhance database performance:

1. Database Diagrams This SSMS tool allows you to view and
design the relationships between your database tables. You can
create new tables in the designer, and then make changes to each
table’s columns, adding, changing, or removing them. You can add
a table in the designer and then right-click it to add the related
tables so that you can easily see the relationships (see Figure 2-25).

Figure 2-25 SSMS database diagram

2. Script Generation SSMS has an option for generating the script for
one, several, or even all the database objects, to rebuild them in the
same or another database. The Generate Scripts Wizard starts with
the Choose Objects page, where you can choose which objects you

want to generate the script (see Figure 2-26). Then, the next page
asks you to indicate where you want to generate the script (in the
clipboard, a file, or a new query window). Also, you can click
Advanced and in the resulting window, define several options:

A. If you want the script to drop, create, or drop-and-create the
objects

B. If you want to include indexes
C. If you want the script for a standalone SQL Server engine or

an Azure SQL database
D. Other specific properties

Figure 2-26 SSMS Generate Scripts Wizard

3. Execution Plan SSMS queries the underlying engine for the query
plan steps and represents them graphically.

The graphic is interactive; it allows you to click any of the steps and
see exactly the estimated cost of that step in the final execution,
which helps you refine the query. In Figure 2-27 you can see the
information displayed when you move the mouse pointer over one
of the execution plan steps.

Figure 2-27 SSMS query plan

4. Database Deployment The Tasks menu, when you right-click the
database, you have several actions you could perform. One option
opens the Database Deployment Wizard, which lets you copy the
entire database to another server, including an Azure SQL
Database. This process can be done by moving the database
physically, when the source and the destination are on-premises
servers, or by generating a script that creates the objects and inserts
the data. This process may take a lot of time, depending on the
amount of data the database contains.

5. Other Using the same Tasks menu, you can update a data tier
application, encrypt columns, import flat files, and import or export
data. The latest versions include management for Jupyter notebooks
like Azure Data Studio.

Other query tools
Several developer tools have database query capabilities.

For example, Visual Studio Code can add the SQL Server (mssql)
extension, which has design and query capabilities. Once it’s added, you
can define connection profiles and navigate the objects; build some simple
queries, such as selecting the first 1,000 rows; or generate a script for object
creation or deletion (drop).

With Visual Studio (any edition), the Server Explorer tool manages SQL
Database connections, as you can see in Figure 2-28, where you can add
databases, look at their objects, get data from them, define queries, create
new objects, and other tasks.

Figure 2-28 Visual Studio Server Explorer

Skill 2.4: Describe query techniques for
data using SQL language
Structured Query Language (SQL) is a set of commands, modifiers, and
definitions that compose a language, focused on retrieving information
from relational data storages. It appeared during the early 1970s and is
currently recognized as a standard language under ISO and ANSI
regulations.

The ISO standardization is the ISO/IEC 9075 and was reviewed the last
time in 2011, when it added specifics for XML usage.

The last review by ANSI was in 1992, and obviously it did not include a
lot of the new features, standards, and definitions already considered “de
facto” standards, like XML, JSON, binaries inclusions, and many others.
However, in sync with the ISO reviews, “modifiers” for the ANSI SQL
standard were written until 2011.

All the database engine companies “adapt” ANSI SQL for better results
with their database processes and to enhance the language. However, all of
them comply with the core language structure and extend it for their own
needs.

That is why you can find other names for the language such as T-SQL,
for Microsoft SQL Server, and PostQUEL, for PostgreSQL (which was
renamed to Postgres query language).

No matter which specific version of SQL we are talking about, all of
them match the same basic definitions.

This skill covers how to:
Compare DDL versus DML
Query relational data in PostgreSQL, MySQL, and Azure SQL
Database

Compare DDL versus DML
We can group the commands in SQL by their primary function. Some of
them manage data, some define objects, and some reconfigure the database
or the engine.

Data Definition Language
Data Definition Language (DDL) provides the commands for managing
the objects inside the database. The objects can be tables, columns, or
indexes; other constraints over tables, columns, or indexes; or their
properties and attributes.

Since DDL statements manipulate objects, you cannot be assured that
one statement will not remove an object affected by the statements that
follow. Therefore, a DDL statement must usually be placed at the end of a

batch or group of statements. However, there are some cases where more
than one DDL statement can be in the same batch.

In Transact SQL (T-SQL), a DDL statement might be followed by the GO
statement, which means “The batch ends here. Execute.”

Here is the basic structure for a DDL statement:
Click here to view code image
<Action> – <affected Object Type> – <name of the object> –
<required parameters>.

And the verbs for the actions are as follows:
CREATE

ALTER

DROP

RENAME

TRUNCATE

The following statement creates a table:
Create table statement

Click here to view code image
CREATE TABLE dbo.Address
 (AddressID INT IDENTITY(1, 1) NOT NULL,
 AddressLine1 NVARCHAR(60) NOT NULL,
 AddressLine2 NVARCHAR(60) NULL,
 City NVARCHAR(30) NOT NULL,
 StateProvince dbo.Name NOT NULL,
 CountryRegion dbo.Name NOT NULL,
 PostalCode NVARCHAR(15) NOT NULL,
 ModifiedDate DATETIME NOT NULL,
 CONSTRAINT PK_Address PRIMARY KEY CLUSTERED(AddressID ASC)
)
ON [PRIMARY];

As you can see, the part listing the required parameters (beginning with
AddressID) is a complex syntax describing each of the table columns. Each
database engine has its own reserved words for this purpose. Usually, the

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg123-1a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg123-2a

database engines respect the ANSI standard about data types, and an integer
can also be named int, integer1 as tinyint, currency as money, and so forth.
Keep in mind that differences exist in some data types, such as data types
used to store strings and that, as in the sample, some engines are capable of
managing user-defined data types, such as the name data type for the
StateProvince and CountryRegion columns.

The ALTER verb changes part of the definition of an object, but not all
changes are permitted. If you add a column to a table, the ALTER command
will work, but you cannot change the type of an existing column from a
string type to a numeric one, if the data contains chars other than numbers.
If not all values can be converted, change the values first or add a new
column, update it with the right values, drop the old column, and rename
the new column as sp_rename.

The DROP command physically eliminates an object from the database,
without no possibility for rollback. There are some limitations, since an
object may have dependencies. A table may have other tables that use its
information as foreign key constraints. In that case, you cannot drop that
table; you must drop the relations before dropping the object itself. Other
dependent objects, such as indexes, constraints, or default values, will be
dropped automatically when you drop a table.

Another factor you must consider is that a table might be referenced by
code in other objects, such as views or stored procedures. Something tricky
could happen with those objects. A view that depends on the table cannot
be deleted if a special modifier like SCHEMABINDING is used in the view
definition. However, you can define a stored procedure even when some of
the elements used by the procedure do not exist. That’s because a procedure
can act after the procedure that creates the table. When you drop a table, the
relationship with the procedure is not checked, and then later, when the
procedure is executed, an error is raised.

In SSMS, before dropping a table, you can see its dependencies by
right-clicking the table and selecting View Dependencies to open the Object
Dependencies dialog box, shown in Figure 2-29.

Figure 2-29 SSMS object dependencies

The RENAME command changes the name of an object. Exercise care
when using this command, since you cannot review the views and stored
procedures like you can when you drop an object.

Note sp_rename

In T-SQL there is no RENAME command. Instead, there is a system
stored procedure, sp_rename, which alerts you to a possible issue.

Data Manipulation Language
The other big part of the SQL language is Data Manipulation Language
(DML), the set of commands that work with the data in the database. The
basic syntax schema is similar to DDL, but the verbs are different, and there
are more options and combinations.
Click here to view code image
<action> -[<specific properties>] - [<action modifier>] - <object
affected> - [<action
modifier2>] - [<action modifiers>]

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg125-1a

If you want to select information from the database, the statement looks
something like this:
Select statement basic structure

Click here to view code image
SELECT
 <List of columns>
 FROM
 <table name>
 WHERE
 <condition>
 ORDER BY
 <List of Columns to sort by>

And here are the basic structures for Insert, Update, and Delete:
Insert statement structure

Click here to view code image
INSERT INTO <table name>
 (
 <List of columns to add values>
)
VALUES
 (
 <List of values to add>
);

Update statement structure

Click here to view code image
UPDATE <table name>
 SET <List of <Column to Update>=<new Value>,
 <Column to Update>=<new Value>
 >

Delete statement structure

Click here to view code image
DELETE FROM <table name>
WHERE
 (<list of Filter conditions>)

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg125-2a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg125-3aa
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg125-3ba

Sometimes you will see other nomenclatures for SQL statements, like
Data Control Language for commands that manage security like GRANT or
REVOKE, which perfectly match the DDL concept because you manage the
object’s security.

Something similar occurs with other statements such as conditionals,
loops, and variable declarations in DML.

Query relational data in PostgreSQL, MySQL,
and Azure SQL Database
In this section, we will review the syntax for manipulating data in the
various relational storage solutions. The relational stores are similar in most
cases, since they are based on the standard SQL specification.

Query data in SQL Server databases
First, let’s look at several T-SQL statements. Note that we will not show the
results here, since they can require a lot of space. Instead, you can find them
as part of the files accompanying this book, in a Jupyter Notebook named
Ch2 Query data in SQL Server Databases.ipynb. You can open this
notebook with Azure Data Studio or SSMS and test the statements for
yourself.

All the samples in this section apply to the AdventureWorksLT sample
database, which you can select when creating an Azure database.
Simple Select

Click here to view code image
SELECT
 *
 FROM
 [SalesLT].[Product]

The SELECT statement is the simplest query you can write. The asterisk
symbol (*) means “all columns” and is useful when you need a way to
retrieve all the columns at once. However, you almost never need all

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg126-1a

columns. Not retrieving all columns reduces network traffic. Moreover,
when new columns are added, the query returns different results, which
might break the application. It is always better to define the columns you
need in each query.
Select with list of columns

Click here to view code image
SELECT [ProductID],
 [Name],
 [ProductNumber],
 [Color],
 [StandardCost],
 [ListPrice],
 [Size],
 [Weight]
FROM [SalesLT].[Product];

Select with sort by two columns

Click here to view code image
SELECT [ProductID],
 [Name],
 [ProductNumber],
 [Color],
 [StandardCost],
 [ListPrice],
 [Size],
 [Weight]
FROM [SalesLT].[Product]
ORDER BY [Name],
 [Size];

ORDER BY sorts the data, taking the column following the ORDER BY
modifier as the first level to sort, and following the list in order, from left to
right.
Select with sort by two columns, excluding rows with no size defined

Click here to view code image
SELECT ProductID,
 Name,
 ProductNumber,

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg126-2a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg127-1a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg127-2a

 Color,
 StandardCost,
 ListPrice,
 Size,
 Weight
FROM SalesLT.Product
WHERE(Size IS NOT NULL)
ORDER BY [Name],
 Size;

In this case, a WHERE predicate has been applied that looks at the values
in the Size column. Those rows without a value (the column contains a null
value) are excluded from the result set.
Select from two related tables, with sort by two columns, from different tables

Click here to view code image
SELECT
 PC.Name AS Category,
 P.Name,
 SUM(SOD.OrderQty) AS [Total Ordered],
 COUNT(SOD.SalesOrderID) AS Orders
 FROM
 SalesLT.Product AS P
 INNER JOIN
 SalesLT.ProductCategory AS PC
 ON P.ProductCategoryID = PC.ProductCategoryID
 INNER JOIN
 SalesLT.SalesOrderDetail AS SOD
 ON P.ProductID = SOD.ProductID
 GROUP BY
 PC.Name,
 P.Name
 ORDER BY
 Category,
 P.Name;

Note Aliasing long names

As you can see in the FROM part of the SELECT, each table is
followed by the AS expression with a letter or a couple of letters.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg127-3a

That makes it easier to identify the tables by the ALIAS instead of
the full name.

Notice the FROM clause relates to the Products table with a
ProductCategory table, using the INNER JOIN clause, which means “All the
rows where the ON condition evaluates to true.”

Establishing a join usually requires specifying which column, or
columns, must match one table with the other, but that is not always the
case. In this case, the ProductCategoryID values in the Products table must
match with ProductCategoryID in the ProductCategory table. However, you
can use other operators and other kinds of condition evaluation.

It is not required that the column names match. Columns could have
different names, while the data type is the same. Of course, the logical
coherence in the data is important, but it is not a matter of column names at
all.
Select from three tables, with sort by two columns, from different tables, and aggregate
functions applied groups by the sorted columns

Click here to view code image
SELECT
 PC.Name AS Category,
 P.Name,
 SUM(SOD.OrderQty) AS [Total Ordered],
 COUNT(SOD.SalesOrderID) AS Orders
 FROM
 SalesLT.Product AS P
 INNER JOIN
 SalesLT.ProductCategory AS PC
 ON P.ProductCategoryID = PC.ProductCategoryID
 INNER JOIN
 SalesLT.SalesOrderDetail AS SOD
 ON P.ProductID = SOD.ProductID
 GROUP BY
 PC.Name,
 P.Name
 ORDER BY

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg128-1a

 Category,
 P.Name;

The statement relates three tables with join and groups the results by the
Category Name and the Product name. The other values are a count of the
Orders and a total of the quantity from all the orders for each category and
product.
Select from three tables, with sort by two columns, from different tables, and aggregate
functions applied groups by the sorted columns, including not matching rows

Click here to view code image
SELECT
 PC.Name AS Category,
 P.Name,
 SUM(SOD.OrderQty) AS [Total Ordered],
 COUNT(SOD.SalesOrderID) AS Orders
 FROM
 SalesLT.Product AS P
 INNER JOIN
 SalesLT.ProductCategory AS PC
 ON P.ProductCategoryID = PC.ProductCategoryID
 LEFT OUTER JOIN
 SalesLT.SalesOrderDetail AS SOD
 ON P.ProductID = SOD.ProductID
 GROUP BY
 PC.Name,
 P.Name
 ORDER BY
 Category,
 P.Name;

In this statement, the relation between the SalesOrderDetails table and
the Product table is using a LEFT OUTER JOIN, which means “All the rows
from the table to the left of the join (Products) no matter if there are
matching rows in the table to the right (SalesOrdersDetails).” This includes
all the products, even those without orders, and it returns 0 for the order
count and null for the total of quantity, since there is no order.

Query data in PostgreSQL databases

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg128-2a

Now that you have the T-SQL samples, we can look at the same samples
but in a PostgreSQL database.
Simple Select

Click here to view code image
select *
from public.product

Notice the query is almost identical to the one for SQL Server.
Select with list of columns

Click here to view code image
select productid
 ,name
 ,productnumber
 ,color
 ,size
 ,weight
 ,productcategoryid
from public.product

Select with sort by two columns

Click here to view code image
select productid
 ,name
 ,productnumber
 ,color
 ,size
 ,weight
 ,productcategoryid
from public.product
ORDER BY Name,
 Size

The ORDER BY sorts the data, taking the column following the ORDER BY
modifier as the first level to sort and following the list in order, from left to
right.
Select from two related tables, with sort by two columns, from different tables

Click here to view code image

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg129aa
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg129ba
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg130-1a

select productid
 ,ProductCategory.Name AS Category
 ,product.name
 ,productnumber
 ,color
 ,size
 ,weight
from public.product
 INNER JOIN ProductCategory ON Product.ProductCategoryID =
ProductCategory.
ProductCategoryID
ORDER BY Category,
 Product.Name;

Select with sort by two columns, excluding rows with no size defined

Click here to view code image
select productid
 ,ProductCategory.Name AS Category
 ,product.name
 ,productnumber
 ,color
 ,size
 ,weight
from public.product
 INNER JOIN ProductCategory ON Product.ProductCategoryID =
ProductCategory.
ProductCategoryID
 WHERE(NOT(Size IS NULL))
ORDER BY Category,
 Product.Name;

Select from three tables, with sort by two columns, from different tables, and aggregate
functions applied groups by the sorted columns

Click here to view code image
SELECT ProductCategory.Name AS Category,
 Product.Name,
 SUM(SalesOrderDetail.OrderQty) AS Total_Ordered,
 COUNT(SalesOrderDetail.SalesOrderID) AS Orders
FROM Product
 INNER JOIN ProductCategory ON Product.ProductCategoryID =
ProductCategory.
ProductCategoryID

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg130-2a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg130-3a

 INNER JOIN SalesOrderDetail ON Product.ProductID =
SalesOrderDetail.ProductID
GROUP BY ProductCategory.Name,
 Product.Name
ORDER BY Category,
 Product.Name;

Select from three tables, with sort by two columns, from different tables, and aggregate
functions applied groups by the sorted columns, including not matching rows

Click here to view code image
SELECT ProductCategory.Name AS Category,
 Product.Name,
 SUM(SalesOrderDetail.OrderQty) AS Total_Ordered,
 COUNT(SalesOrderDetail.SalesOrderID) AS Orders
FROM Product
 INNER JOIN ProductCategory ON Product.ProductCategoryID =
ProductCategory.
ProductCategoryID
 LEFT OUTER JOIN SalesOrderDetail ON Product.ProductID =
SalesOrderDetail.ProductID
GROUP BY ProductCategory.Name,
 Product.Name
ORDER BY Category,
 Product.Name;

If you compare the two groups of statements for SQL Server and for
PostgreSQL, they are very similar, except for some object names. But the
way you write queries is almost the same.

Query data in MySQL
The queries performed against MySQL are almost exact copies of those we
just reviewed.

Of course, you need to establish the proper connection to the database.
There are several tools for doing so, like MySQL Workbench from the
MySQL team, or business intelligence tools like Microsoft Power BI,
among others.

The syntax for MySQL and MariaDB is compatible as well and will not
be detailed here.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch02_images.xhtml#pg130-4a

Chapter summary
Online transaction processing (OLTP) is the database implementation
for storing information about each change in the set of entities
managed by an application, in the precise moment the change is
registered.
Online analytical processing (OLAP) is how the information retrieved
from OLTP is grouped, recalculated, and processed to get big-picture
information, allowing users to see more details.
A table is the structure where information is stored. It is defined by
columns, which establish the type of data it can store, and can have
other restrictions such as nullability, ranges of data accepted, and
default valued for each new row. These restrictions are known as
constraints.
Indexes make it easier to sort and find information in big sets of data
and reduce resource consumption.
IaaS is the Azure service in charge of the basic physical infrastructure,
such as the building, power source, hardware, network, external
connectivity, and physical and internet security, and allows Azure
customers to mount servers as virtual machines, thus ensuring high
availability and disaster recovery.
PaaS is the Azure service in charge of making services available such
as storage and hosting with no platform implementation or
management from your side. You use what you need, when you need
it, and configured the way you need. The low-level setup is managed
by the Azure team. It includes a range of services like storage
accounts, database services, workflow services, and web and
application hosting.
SaaS is the Azure service for final users. For example, an organization
purchases the SaaS they need, such as an email server, document
platform, or video streamer, and then enables its employees to use
services provided by Azure SaaS on a per-user (or per-group) basis.
Microsoft and other providers make more services available every
year.

DTUs and DWUs are units intended to measure transactional and
analytical resources usage to estimate the best implementation for the
relational storage, OLTP or OLAP, respectively.
SQL Managed Instance (PaaS) lets you have several or even a lot of
databases managed by the same service, with high availability,
disaster recovery, and high performance.
Resource providers are the building blocks for PaaS. Interacting with
the providers is a way to create and manage your resources, and more
providers add offerings as building blocks.
Several tools, such as PowerShell, Azure CLI, and Azure Cloud Shell,
are capable of using managed resource providers through ARM
templates.
Four layers protect your data: information protection, threat
protection, access management, and network security.
Data Definition Language (DDL), part of Structured Query Language,
is used for manipulating objects in a database. Objects include tables,
indexes, views, and so forth. The most important commands are
CREATE, DROP, and ALTER.
Data Manipulation Language (DML) is used for manipulation of data
stored in a database. The commands in this group include SELECT,
INSERT, UPDATE, and DELETE.

Thought experiment
In this thought experiment, you can demonstrate your skills and knowledge
about the topics covered in this chapter. You can find the answers to this
thought experiment in the next section.

As a consultant, you have been called to design a solution for a
company hosting websites for sport teams. The company has a contract
with the sports association to provide independent sites for each of the club
members to manage the people associated with each club, and the teams,
games, schedules, and statistics for each one.

Moreover, the administrative application for the association is hosted by
the same provider.

The provider needs a design to migrate all the information to Azure to
reduce the low-level costs, such as datacenters, power supplies, networking,
and internet providers.

This is the information you have:
The association includes all the teams, no matter the size. There are
large teams, medium-sized teams, and a lot of small clubs.
The bigger competitions and activities occur during spring and
summer.
Some small championships are played in rooms instead of fields.
The developer company responsible for the administrative application
of the association told you they use some .NET Common Language
Runtime (CLR) procedures inside the database.
All the applications are web applications and will be migrated to
Azure as well.

What are the resources you decide to propose for each of these
requirements and why?
1. Storage for the database of each club
2. Storage for associate application
3. Storage for historical global statistics
4. Networking configuration

Thought experiment answers
This section contains the solutions to the thought experiment. Each answer
explains why the answer choice is correct.
1. With different clubs, different amounts of data, and different uses, an

elastic pool could be the best choice. With some of the tools designed for
using the Azure Resource Manager, you can script the monitoring and
auto-schedule scaling (up and down), based on resource utilization.

2. Having CLR procedures in a database avoids migration to PaaS. You
must migrate your database to an Azure SQL Server machine.

3. Synapse will be the best choice. Other services must be considered for
extract, transform, and load (ETL) execution, including SaaS available
from Azure, such as Azure Data Factory.

4. Since all the applications will be migrated to Azure PaaS, there is no
need for external connections. It will be enough to enable all the
connections from inside Azure Services, including the VM, and if you
need to manage one of the databases, you can do so by connecting
through Remote Desktop Protocol (RDP) to the VM and, from there,
reaching the desired database.

Chapter 3

Describe how to work with non-
relational data on Azure

A lot of information out there cannot be stored in a structural way. Consider
the original document we wrote for this chapter. It is a document, and it has
no structural elements in common with other documents delivered for this
book, such as scripts, plan data, and notebooks. Storing these documents in
the same table is not the best option, unless our table has a column for the
title and another for the content—a really poor structure for a relational
database.

In this chapter, we will cover other kinds of repositories for non-
relational data.

Skills covered in this chapter:
Skill 3.1: Describe non-relational data workloads
Skill 3.2: Describe non-relational data offerings on Azure
Skill 3.3: Identify basic management tasks for non-relational data

Skill 3.1: Describe non-relational data
workloads
In the previous chapter, we talked about relational workloads and the
different flavors you have in Azure to manage them.

Now it is time to learn about the other way to manage storage: non-
relational workloads.

This skill covers how to:
Describe the characteristics of non-relational data
Describe the types of non-relational and NoSQL data
Recommend the correct data store
Determine when to use non-relational data

Describe the characteristics of non-relational data
The term “NoSQL” was used for the first time around 1998 to describe a
data storage that does not use any form of SQL to get the information. The
so-called NoSQL database is a relational database, but it does not use
Structured Query Language. Perhaps a more accurate term for storage data
for non-relational information would be “No-REL” instead of “NoSQL” to
better describe the absence of relationship in the data, but the term that
caught on was “NoSQL.”

Assuming you enjoy music, navigate to the folder in your disk where
you keep it. That is NoSQL information. Each file can have some
attributes, such as title, genre, performer, album, and year. But all your
music files do not have necessarily have all the attributes, or some of them
could have more attributes than others. Somehow, each file is a piece of
information, but they are not structured or related to other files. You can
group them in folders or use a programming language to retrieve the
attributes and build some kind of grouping, but they continue to be isolated
files.

The documents Microsoft Excel or Microsoft Word applications manage
are examples of other kinds of structured but not related data. In the past
century, these were COM documents, but later they were redesigned as a
set of XML subdocuments, contained in a compressed file.

Note The structure of a Word document

You can see the structure of a Word document if you take one
and change the extension from .docx to .zip. Then you can open
the file and look at the inside structure in folders and the XML
documents that compose the Word document.

Here are the most important characteristics of NoSQL databases:
Most of them do not adhere to the ACID (atomicity, consistency,
isolation, durability) principle. With no relationship between data, it is
not a goal to maintain consistency or atomicity.
Usually they are easy to design since there are no complex structures,
relation, indexes, and so on to define.
They can scale up horizontally easier than relational databases. This is
an important feature for social networks, mostly because they do not
conform to the ACID rules, which makes it difficult to scale up in a
horizontal way.
They can replicate the information geographically very fast, another
important feature for social networks.
Some of them can have data loss, at least in some of the replicas,
increasing the maintenance work necessary to keep them consistent
across the copies.
They are not good for managing distributed transactions.
In many cases, there is no standard interface for data manipulation,
making it harder to create applications to use them.

Describe the types of non-relational and NoSQL
data

There are several different types of styles for storage of NoSQL data. Each
style has several implementations by different companies or open source
groups, and the methodology evolves continuously. The storage styles can
be grouped in the following basic definitions.

Key-value store
This kind of storage uses the principle of a hash table, also called a
dictionary. No matter what the value content is, it must be just one value,
and it can be matched with a unique key.

Using this concept, object-oriented storage falls into this category, since
the “value” could be an object, with different attributes. This means that in
one repository you can store elements with different structures, and the
storage will only be in charge of managing them by their keys.

Some of these types of storage use in-memory manipulation, making
them very fast. When the repository manages high volumes, you usually
use SDD disks to reduce the disk I/O latency.

In other cases, the storage is always on disk, and optimization of a
search is implemented by using some of the algorithms of extendible
hashing, or B-tree, to look for specific keys. In Table 3-1, you have a
representation of a B-tree, where to find, say, the 23 entry, first you go to
the top row to find the “20” group, and then look inside it to find the
appropriate entry.

Table 3-1 Representation of B-tree storage

10 20 30

 11 <data> 21 <data> 31 <data>

 12 <data> 22 <data> 32 <data>

 13 <data> 23 <data> 33 <data>

 14 <data> 24 <data> 34 <data>

 15 <data> 25 <data> 35 <data>

10 20 30

 16 <data> 26 <data> 36 <data>

 17 <data> 27 <data> 37 <data>

 18 <data> 28 <data> 38 <data>

 19 <data> 29 <data> 39 <data>

The idea is to manage the keys in groups to easily find what you are
looking for. This algorithm is even faster than bubble search, which was
implemented in some of the key-value pairs storage as well.

There are variations in the storage mode, including ordered key-value,
tuple storage, and key-value cache.

In key-value storage, the engine is completely content-agnostic and
cannot do anything with the entries, except send the content to the
requester.

Need More Review? B-tree and ordered key-value

For B-tree search details, go here to see good examples:
http://maf.directory/btp/algo. For ordered key-value details, go
here: http://highscalability.com/blog/2007/7/31/berkeleydb-other-
distributed-high-performance-keyvalue-datab.html.

Document store
This is an extension of the key-value implementation. It stores information
in a hash structure, but in this case, the value is a document.

Even when the documents are completely different, having documents
with the same properties or attributes, such as title, author, and creation

http://maf.directory/btp/algo
http://highscalability.com/blog/2007/7/31/berkeleydb-other-distributed-high-performance-keyvalue-datab.html

date, allows the engine to search inside the content, which is not possible in
simple key-value databases.

The most common document types stored in this kind of stores are:
XML (Extensible Markup Language) documents A specific subset
of document store engines is oriented to manage these documents.
There are several standard schemes for XML files, which make them
easy to analyze and make consistent.
YAML (YAML Ain’t Markup Language) documents Used to
manage configuration files, the structure enables storing of any kind
of information, including strings, arrays, and collections.

Need More Review? YAML

You can find the complete structure definition of YAML at
https://yaml.org/refcard.html.

JSON (JavaScript Object Notation) Confirmed as a standard in
2013, JSON is one of the most popular formats for interchanging and
storing information in the Web 2.0 era. In the previous chapter we
talked about the ARM templates, which are JSON files with only
standardization of the content. The template uses JavaScript notation,
but it is not linked to the scripting programming language. There are
more than a hundred application programming interface (API)
libraries to manage JSON files from several programming languages.
JSON supports schematization like XML, which ensures the
documents match specific structures.
Click here to view code image
JSON sample
{
 "$schema": "http://schema.management.azure.com/schemas/2015-
01-01/
deploymentTemplate.json",

https://yaml.org/refcard.html
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg138a

 "contentVersion": "1.0.0.0",
 "parameters": {
 "clusterLocation": {
 "type": "string",
 "defaultValue": "southcentralus",
 "metadata": {
 "description": "Location of the Cluster"
 }
 },
 "clusterName": {
 "type": "string",
 "metadata": {
 "description": "Name of your cluster "
 }
 }
 }
}

BSON (Binary JSON) An extension of JSON intended to prevent the
use of characters that are not permitted and to enhance the storage and
transmission of the information. BSON was originally implemented
by one of the NoSQL database engines, MongoDB, and it stores the
information using a specific structure and binary markers to identify
the different parts.
With the ability to manage these various formats, the most important
benefit of all these storage engines is the fact that there is no need to
keep all the documents with the same schema or style. They could
store documents in different formats and different schemas with no
problem.

However, this document storage technology does present a difficulty.
The application developer is responsible for detecting the document
type and then identifying any schema applied and acting accordingly.

Columnar data store
The columnar data store follows the same principle as the key-value
storage. However, there are two important differences:

The value is accessible by the engine. This means that the engine
could find pieces of information inside the values, as specific values

for any attribute, as happens with documents.
The value part contains several attributes related somehow between
them, to define an entity.

The columnar data store is like a relational table store, where not all the
entities have the same structure. Imagine a cell phone manufacturer storing
information about its products. In one column store, using the model code
as key, they store the sales specifications, such as screen size, camera
resolution, and 4G bands. In another column store, using the same key, they
have the part numbers used to build the phone.

The storage manages the information by its key, instead of generating a
hash like document storage, and allows the user to locate an entry directly
by its key or by getting entries for a range of key values.

In some engines, extra indexes can be created based on attribute values.
Even when you use relational table storage, this implementation does

not force you to have the same structure for each entity. One entity can be
stored in three-column store structures, whereas another can be stored in
just two or even one, since there is no restriction on which columns must be
used. In some cases, like older models, the cell phone does not need the
column store for sales, since it is a discontinued model, but you want to
keep the part numbers for customer support reasons.

As another example, a person could have an entry for their personal
information and, in another column store, another entry about their
children. But a person who is childless does not have information to enter
in that column store.

Graph store
Used to store graph representation, this kind of database manages the
adjacency list or adjacency matrix to represent the information. A good
example is the relationships in a social network. You, as a person, probably
have friends or well-known people you follow or have marked as friends
(or family). This makes a graph, with you in the center.

Since you are the one who recognizes those persons as related with you,
the graph is directed from you. Figure 3-1 shows a representation of a

directed graph.

Figure 3-1 A directed graph

When the relationship represented is two-way, it is called an undirected
graph.

In a graph, the elements are called nodes, or vertices, and the connecting
lines are edges.

Table 3-2 shows an adjacency list representation of a graph. The first
column in each row represents a node and the remaining columns represent
the nodes that are related to it.

Table 3-2 Adjacency list representation

1 2 4

2 1 3 4

3 2

4 1 2

When an adjacency matrix is used, as shown in Table 3-3, the vertices
are in the first row and in the first column, and Boolean information is
stored indicating whether or not a relationship exists between them.

Table 3-3 Adjacency matrix representation

 1 2 3 4

1 X X

2 X X X

3 X

4 X X

Time series store
This kind of information is related to events registration, and it has been
increasing significantly during the last few years, having a lot of simple
data processed in several ways.

The data sources are small pieces of information but in huge volumes,
like those generated by geo-positioning, IoT devices, and weather micro
changes. Table 3-4 contains entries from different devices, with the
corresponding time stamp, structuring a time series.

Table 3-4 Time series sample

Time DeviceId Value

1056442:57:33 12143 21

1056442:57:33 12144 22

1056442:57:33 12145 12

1056442:57:33 12146 3

Time DeviceId Value

1056442:57:33 12147 21

1056442:57:33 12148 10,1

1056442:57:33 12149 8,2

1056442:57:33 12150 6,3

The management system controls several aspects: the arrival of a lot of
information at the same time, how to manage information delayed in
reaching the repository, as well as how to optimize the indexation and
searching for segmented data to ensure quick responses.

Object data store
The object data store is used for huge volumes of information, which is
stored in binary format. Each entry contains three pieces of information:

Key, used to uniquely identify the item
Binary content
Metadata, usually in JSON format

Another use for this kind of storage is as a file repository for multiple
files.

Think of the object data store as a shared folder in a local network, but
with two differences: it has custom metadata, and it can be easily reached
with the appropriate rights from anywhere through the internet.

Choose the correct data store
Choosing the right data store for non-relational data store is about matching
your needs with the capabilities and avoiding the limitation of the different
types of data store.

For example:

If you need to find information about the properties of the content,
key-value or object data will not be your choice, since both have only
a primary key.
If you need to store several properties by entity, key-value, graph, or
time series data stores are not good choices.
Since object data is accessed sequentially, it will not be your choice if
you need random access.

The estimated size of each entity is another consideration, because some
of the storage types are not capable of managing large entities. If you need
to store huge elements, columnar data or object data will be your choice.

Data coming from measuring devices must be stored really fast to avoid
losing data. Most of the IoT information is directly related to the moment
things occur. Given that, time series is the best choice for this kind of
information.

Need More Review? Stores and capabilities

See a comparative table of stores and capabilities at
https://docs.microsoft.com/en-us/azure/architecture/data-
guide/big-data/non-relational-data#typical-requirements.

Determine when to use non-relational data
There are different reasons for using non-relational storage:

Volume Managing really huge volumes of information, like those
coming from social networks or IoT devices, can be difficult for
relational databases. It could be worse if the amount of information
continuously increases. A relational database must manage ACID all
the way, and in this kind of scenario, tends to have locking issues
when managing several transactions at the same time.

https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/non-relational-data#typical-requirements

Type of data In recent years, more and more information is
transferred and stored using JSON notation. This kind of information,
like data managed by object-oriented programming languages, is
difficult to store in relational databases, unless you intercept the
process with some tangled programming in the middle.

Another reason to use non-relational databases is the need to store
information with different structures in the same storage solution. This is
something that could happen when you manage social network information.

Consider a sentiment analysis application, evaluating how people react
to changes in your public communication, when you establish new
conditions for sales, or simply for a new published product. The more
information you collect, the better evaluation you will have. However,
people express opinions in different places and on different social networks,
each of them with different data structures.

Normalizing the information to store in a relational database can be
expensive, and in any case, you will use that information with tools
performing text analysis. It is better to store it in non-relational databases.

Skill 3.2: Describe non-relational data
offerings on Azure
Each type of non-relational information can be managed by one or more
Azure services. Depending on the use, you must decide which of them to
implement. In this section, you will learn about these services, how they
manage the information, and their capabilities and weaknesses.

This skill covers how to:
Identify Azure data services for non-relational workloads
Describe Azure Cosmos DB API
Describe Azure Storage

Describe Azure Table storage
Describe Azure Blob storage
Describe Azure File storage

Identify Azure data services for non-relational
workloads
Microsoft Azure provides you with different non-relational storage
solutions to consider when you design an architecture. The right path to
selecting the one you will use is to define which kind of storage best fits
your needs, and then see what services and implementations you have in the
Azure platform.

Table 3-5 contains the service by the data storage type you have
available.

Table 3-5 Types of storage services in Azure

Storage Azure Service

Key-value Cosmos DB

Azure Cache for Redis

Document Cosmos DB

Graph Cosmos DB

Column family HBase in HDInsight

Cosmos DB (using Cassandra API)

Search indexed information Azure Cognitive Search

Storage Azure Service

Time series Time Series Insights

Object Blob storage

Table storage

Files File storage

Some of the storage options have more than one service, which means
you must review exactly what you want to do with the data and determine
which service gives you the most reliable, effective, and at the same time,
least expensive solution.

Or you can simply differentiate the kind of data you need to store. For
example, you can store huge volume content like audio or video data by
using Azure Blob, or you can store programmatic objects, representing
entities, easily searchable by key, which can be implemented using Table
storage. We will analyze the most important Azure services and use some
examples from real life to help you understand how they are used.

Describe Azure Cosmos DB API
Azure Cosmos DB is part of the PaaS offering from Azure. It is the non-
relational database storage offering by Microsoft, launched in 2017. The
entry point for an Azure Cosmos DB is a Cosmos DB account, which does
not need to match an Azure account. An Azure subscription can contain up
to 100 Cosmos DB accounts. Each account can hold several databases,
where you can define different containers.

Internally, Cosmos DB stores the information for each container in
logical partitions, and each one can be stored in one or more physical
partitions. The management of the partitions is not something you have to
take care of—Cosmos DB internally administers them. Figure 3-2 shows
how Cosmos DB stores the information in databases that can manage

several containers for it. Each container stores one or more different
partitions to manage the information.

Figure 3-2 Cosmos DB Storage

An important feature of Cosmos DB is the ability to be globally
distributed. Having more and more application and data repositories
working all around the globe, with the data near the user, is not
insignificant.

Cosmos DB ensures high availability, high performance, and low
latency, which means fast responses, allowing you to share the same
information in different datacenters and have the same application
geographically distributed, reaching content from any of the Cosmos DB
replicas.

At the same time, Cosmos DB uses the elasticity principle in all the
regions. The elastic implementations are for read and for write operations
as well, in the same way. This reduces the total cost, since the resources
increase only in the region needed at any given time, not in all the
locations.

Geographical differences in utilization, by cultural dependences, or any
other reason do not impact the entire implementation, but only the affected
area.

And the different locations have no differences in their usage. All of
them are updatable at the same time, because the Cosmos DB platform
ensures full distributed replication in all the nodes.

Notice that you can add or remove regions without services lockdown.
Also, Cosmos DB implements automatic failover, even across regions,
which makes it almost impossible to lose service.

Based on these features, Cosmos DB has an SLA of 99.999 percent and
guarantees 10-millisecond writes completed in any region.

Consistency levels
Managing data across regions, when all the regions could be updated, raises
an issue that is always problematic to deal with: maintaining consistency
between the replicas. This involves trying to ensure that once new data is
written, reading from other regions retrieves the same information recently
updated.

Usually in this type of distribution, you have only two options:
Eventually means that, sometime in the future, any read will probably
get the updated information. However, there is a risk it will not.
Strong ensures that the reads get the updated information. To do so,
when a new update arrives, all the distributed storage devices keep
other external connections on hold, until the distributed update is
completed.

Cosmos DB expands these options, giving you five levels, as explained
in detail in Table 3-6.

Table 3-6 Cosmos DB consistency levels

Cons
isten
cy
Level

Description

Cons
isten
cy
Level

Description

Stron
g

This is the standard strong level. Ensures all the reads get the
latest information committed.

Boun
ded
stalen
ess

In this case, the data has a staleness limit, which can be defined
based on two parameters:

Quantity of versions

Elapsed time

Since both parameters can be defined, the data will be confirmed
when any of the limits is reached.

When the data is read from the same region where it was
updated, the engine ensures strong consistency for it.

In other cases, the consistency varies depending on the
parameters defined.

Sessi
on

A token identifies the writer and ensures that it and any other
sharing the same token will get consistent prefix reads.

Part of this configuration guarantees that any connection reading
from the same region will get the most updated version, even
when it cannot be the same connection, since they share the same
token.

Cons
isten
cy
Level

Description

Consi
stent
prefix

At this level, only ordered updates are guaranteed, which means
a reader cannot get information updated out of order.

However, this does not mean the reader will get all the performed
writes. It could get part of the set of writes, but always following
the write order.

As an example, if a process writes three pieces of information
[1001, 1005, 1007], the reader could retrieve only 1001, or
[1001, 1005], or [1005, 1007], but never [1001,1007].

Event
ual

This matches the generic consistency level, which means that
eventually at some point in time, the data will be synchronized
between all the storage devices.

Of course, this example is not about transactional processes, but
only informational, like those used in social networks to store
texts, publications, and replies, that do not need any coherent
grouping.

Accessing from the same region allows you to share the token for the
session, making the calls more reliable.

 Exam Tip

Using the same token is something managed by the application code.
You can get detailed information about this at

https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-manage-
consistency#utilize-session-tokens.

In most cases, using the session consistency level will work perfectly,
and it is the recommended level for many applications.

Starting at this point, if you need more consistency, try to move up one
level (bounded staleness) or move down one level (consistent prefix) for
the opposite case.

Note Consistency connection change

By using the Cosmos DB API, you can define custom
consistency levels. Moreover, even with a specific level defined
in the configuration, it can be changed on a call-by-call basis by
using the API as well.

High availability
As part of the SLA for Cosmos DB, several configuration options allow you
to define exactly what you want for your store. It works by having several
copies of the same data.

As already explained, a Cosmos DB account can contain one or more
databases, and each database can contain several containers. Each
container, which can store tables, graphs, or other collections, is stored in
physical partitions in each region. And each partition has four copies of the
same data. If you define your Cosmos DB to use three different regions, 12
copies will be maintained at any given time.

The single point of failure is when the database is defined with just one
write region, with the rest of them as read replicas, and something bad
happens, such as a misbehaving application, or other, uncontrolled changes.

https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-manage-consistency#utilize-session-tokens

In order to get real high availability, you must configure at least two
different regions for writes. In case of a failure in one of these regions, the
application will use the other region to continue the write activities if you
enabled the automatic failover for the account. Cosmos DB automatically
detects the failure in the primary region and promotes one of the secondary
regions to primary, in order to keep working.

Once the primary region goes back, Cosmos DB replicates the changes
from the active one and re-promotes the original as primary.

Also, you can configure availability zones, which means having replicas
in different zones in the same regions. When you define a multiregion write
configuration, some locations will enable this option (at this time, not all
the regions support this). This zone redundancy does not incur additional
cost for your subscription.

Request units
The unit of measure for Cosmos DB implementation is the request unit
(RU). RUs are used to calculate price and, of course, billing.

The RU represents the throughput of your data. It is an abstract unit
representing input/output operations per second (IOPS), CPU usage,
memory, and similar factors, so you do not need to estimate each of them
individually.

You can use some units as references when you estimate the costs, as in
these two samples:

Reading 1 KB represents 1 RU.
Writing 1 GB takes at least 10 RUs.

The real measure is RUs/second, and you can increase or decrease it by
100 units per second. The billing cost is calculated on an hourly base to
make it simple to assign.

Factors such as data size or quantity of requests affect the costs; most of
these factors are obvious—and others not so obvious, among them:

The number of properties indexed multiplied by the items indexed for
each one

The consistency level assigned
The complexity of the queries executed and their results

You must evaluate the sets (columns of results) and predicates (relations
and conditions) applied in each query. Each of them could change the
number of RUs used by each query.

Moreover, the more functions and stored procedures you use, the more
RUs will be consumed. The complexity of those procedures increases the
consumption of RUs as well.

Having all these elements that influence the RUs makes it difficult to
calculate an approximate estimated range. However, the APIs used to work
with data in Cosmos DB return the RUs cost for each executed command,
making it easy to estimate and fine-tune the costs over time.

It is important to get the information from the APIs, because one of the
factors affecting the RUs is the consistency level, and a command could
change its own consistency level, which change the RUs for that specific
command.

Finally, you must define the throughput for your implementation using
one of two levels: container or database. For both, you configure the RUs-
per-second ratio to use. After you do that, you have the ratio available at the
corresponding level. When your work exceeds the assigned value, delays
may occur, which can be solved by retries. However, it is better to refine
the configuration and avoid delays.

When you define the throughput for a container, the container is forced
to manage that exact throughput. If you set the throughout for a database,
the setting is shared with all the containers inside it, giving you more
flexibility.

Each container in a database requires at least 100 RUs when you
configure the value at the database level, so 10 containers require a
minimum of 1,000 RUs. The throughput for a container could be different
from the throughput for the entire database.

The APIs have specific methods for querying the state of your database
or container, and, better than that, the approximately desired configuration.

Moreover, you can see the same values at the Azure portal to help you
decide how to reconfigure your implementation.

For both levels, you can set up fixed or elastic throughput, based on the
change ratio of your application and your own estimations. Having auto-
scale configuration eliminates the delays while adjusting the costs with
more precision, ensuring there is no over assignment of throughput.

New applications, or those with significant changes in utilization over
time, are the best candidates for dynamic configuration. Of course, dynamic
configuration is ideal for development environments as well.

You can change from standard to auto-scale, and vice versa, at any time
by using the Azure portal or any of the available APIs.

Azure Cosmos DB APIs
The Cosmos DB storage can be used in different ways, depending on your
business needs. This is the reason you must choose an API to interact with,
and more important, do it at the very moment you create the Cosmos DB
account.

The following JSON example is the basis for understanding the queries
in some of the samples of APIs we will explore later.
Data sample in JSON format

Click here to view code image
[
 {
 "CustomerID": "ALFKI",
 "CompanyName": "Alfreds Futterkiste",
 "ContactName": "Maria Anders",
 "City": "Berlin",
 "PostalCode": "12209",
 "Country": "Germany"
 },
 {
 "CustomerID": "ANATR",
 "CompanyName": "Ana Trujillo Emparedados y helados",
 "ContactName": "Ana Trujillo",
 "City": "México D.F.",
 "PostalCode": "05021",

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg149a

 "Country": "Mexico"
 }
]

Note Complete JSON sample

You can find a more complete sample of this JSON in the
NWCustomers.json file in the Chapter 3 source code.

Let us look at the five APIs and see how they are used:

1. MongoDB API
Cosmos DB is capable of hosting Mongo DB repositories, which
can be imported directly to it. In fact, Cosmos DB supports
importing data from several sources and can transform and import
entire databases with the MongoDB format.
After your data is imported, you can execute the same syntax used
by applications designed for MongoDB against Cosmos DB without
changes, following the JScript dotted notation for MongoDB like in
the following:
Click here to view code image
db.Items.find({},{City:1,_id:0})

In this case, only the City column will be returned, but no id. The
notation for the find method is the list of filters as the first
argument and the list of columns as the second argument. Each
column followed by a 1 indicates that the column must be
displayed, but if the name is followed by a 0, that means the column
will not be included in the results.
The following sample uses a filter by country, returning the cities
and postal codes, including the ids for the rows returned:

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg150-1a

Click here to view code image
 db.Items.find({"Country":"Germany"},{City:1,
PostalCode:1,_id:1})

2. Core (SQL) API
You use this API—the default for Cosmos DB—to manage data in a
way similar to the one you use with relational storage.
Core SQL uses a syntax similar to SQL, and at the same time, data
types from JScript, which are:

Undefined
Null
Boolean
String
Number
Object

You must use these specific data types because all the information
is stored in JSON format and only standard JScript data types can
be used.
You can get the elements from the sample by using a SQL-like
statement such as
Click here to view code image
Select City from customers

A subset of ANSI SQL is supported in Core SQL, like SELECT,
GROUP BY, ORDER BY, WHERE clauses, some aggregate functions like
SUM and AVG, and other functions.
The following SQL statement gets the same results as the earlier
example using the MongoDB API:
Click here to view code image
SELECT City, PostalCode FROM Customers WHERE Country =
"Germany"

3. Cassandra API

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg150-2a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg150-3a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg150-4a

Another data storage option capable of being imported directly to
Cosmos DB is Cassandra. The API can be used against Cosmos DB
by just changing the connection to the new data storage.
Cosmos DB supports Cassandra Query Language (CQL) version 4.
For this API, the previous queries we already defined will work:
Click here to view code image
Select City from customers
SELECT "City", "PostalCode" FROM Customers WHERE "Country" =
'Germany'

Note Name restriction for Cassandra columns

For Cassandra, columns with uppercase letters or special
symbols must be delimited by double quotes.

4. Gremlin API (graph storage)
Graph data is processed and requires specific syntax.
As you will recall from our discussion about graph data in Chapter
2, “Describe How to Work with Relational Data on Azure,” the
elements inside Cosmos DB can be either a vertex/dot or a relation
between dots.
That information must be extracted and well formed to send results
to the client.
Cosmos DB uses Gremlin, developed by Apache TinkerPop, for
querying. With the data stored in graphs, the queries will be:
Click here to view code image
g.V().hasLabel(Customers).out ('City')

and

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg151-1a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg151-2a

Click here to view code image
g.V().hasLabel(Customers).has('Country',
'Germany').out('City', 'postalCode')

5. Azure Table API
Later in this chapter we will analyze in detail how to work with
Table storage. Here we only need to mention that when you require
global replication or indexing by several properties, since the
elements stored in tables are in JSON format, you can mount the
data in Cosmos DB and have any or both of these features
automatically applied.
Keep in mind that Table storage is moving from Azure Storage to
Cosmos DB, so this will be the preferred choice.
You will use the same API (LINQ, OData, or REST API) to retrieve
data from Azure Table storage in Cosmos DB, which we will
analyze later.

Practice Creating a Cosmos DB account and database
In this practice, you will follow these steps to have a Cosmos DB database
ready to use:

1. Open https://portal.azure.com and enter your credentials.
2. Select your subscription and resource group.
3. Click Add and, in the Search box, type Azure Cosmos DB and

select it in the results.
4. Click Create.
5. On the Basics tab, confirm the subscription and resource group.
6. Enter the name for your account, the API you want to use—in this

case Core (SQL)—and the location. Notice that you can enable the
Notebooks option for your account, which changes the options in
the Location drop-down list.

7. Enable the desired options.
A. Apply Free Tier Discount This gives you 400 RUs and 5 GB

of storage for free. The discount could be applied to 25

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg151-3a
https://portal.azure.com/

containers for shared throughput databases. This option could
be enabled for just one account per subscription.
For this practice, enable this option.

B. Account Type This option changes the user interface
experience in the portal, but not at resource utilization or
functionality. You can leave this option set to Non-
production.

C. Geo-Redundancy Here you define the regions you want to
use for your databases. Enable this option to see how to
proceed with geo-localization.

D. Multi Region Writes This option enables different regions to
be updatable.
It is not necessary to enable this option for this practice.

E. Availability Zones This option enables the use of different
zones in the same region for availability. Leave this option
unselected for this practice.

8. Click the Networking button to move forward in the wizard.
On the next page, you can select the kind of external access your
account will allow—for example, if you want to enable other Azure
resources to have access to this one. Enabling external access
displays the Firewall options, where you can add your own IP
address. For this practice, enable the external access to add your IP
address.

9. For Backup Policy, you can select between Periodic or Continuous
backup. You must request the Continuous backup for your account
specifically. Also, you can define the scheduling and retention for
your backups. For this practice, leave the default values.

10. On the Encryption tab, you can choose whether the encryption
process uses an autogenerated key or you can point to a custom one
by URL. For this practice, use an autogenerated key.

11. As usual, you can add your own custom tags for billing control.
12. Finally, the Review And Create tab shows you the approximate

time for creating your account, which varies depending on the
region you selected.

Configuring your Cosmos DB account
After you have the account ready to use, you can navigate to the resource in
the Azure portal, or you can navigate the portal and search for the account
in the resource group and see the next steps on the Quick Start tab. There
you can choose your platform: .NET, Xamarin, Java, Node.js, or Python.

Note Enable Notebook for Python or .NET

If you enabled the Notebook feature during the account creation,
you can use it with .NET and Python to manage your account.

For any platform, the first step is to create one or more containers. After
you do that, since you’ve selected a platform, a sample application for that
platform will be available for you to download. If you chose to use a
notebook, a new one is created along with the steps you need to create the
elements by code using your selected platform. Otherwise, you are
prompted to create an Items container, which will use your free tier if you
selected it.

The next step is to download a sample application or navigate the
container with the Azure Data Explorer from the portal. You can see what
the Data Explorer looks like in Figure 3-3.

Figure 3-3 Azure Data Explorer with Cosmos DB

Managing geo-redundancy
To administer where your databases are replicated, you can go to your
account page in Azure portal, navigating to it from your resource group, for
example, and select the Replicate Data Globally option in the left toolbar.
Figure 3-4 shows the Geo-redundancy configuration page.

In the world map, you can click any of the icons for the datacenters to
add them to your replication zones. If you enable multiregion writes, each
new region will be enabled. Also, those regions capable of managing
availability zones display a check box that you can select to enable those
availability zones when added.

Figure 3-4 Cosmos DB geo-redundancy

Configuring consistency
By default, a session consistency pattern is automatically assigned to a
newly created account. You can change it by selecting the Default

consistency option in the left toolbar of your account page.
An animated graphic is displayed to explain how the selected

consistency works, which changes depending on the selection. If you opt
for the Bounded Staleness option, the fields for entering the maximum lag
for time and operations appear so that you can configure them.

Importing data to your Cosmos DB
You already know several types of database (APIs) that can be used with
Cosmos DB. Sometimes, you want to import previously implemented data
repositories to your Cosmos DB account. Or perhaps you are creating a new
implementation from scratch but have data in different formats ready to be
used in your database. This is where the Azure Cosmos DB Data Migration
tool comes in handy.

Note Latest version of the Data Migration tool

You can download Data Migration tool here:
https://aka.ms/csdmtool. In the zip file, you have a console
application (dt.exe) and an interactive windows application
(dtui.exe).

The tool imports data from the following sources:
Amazon DynamoDB
Azure Cosmos containers
Azure Cosmos DB bulk import
Azure Cosmos DB sequential record import
Azure Table storage
Blob
CSV files

https://aka.ms/csdmtool

HBase
JSON files
MongoDB
MongoDB Export files
SQL Server

Each one requires specific syntax and verification, and detailing them is
outside the scope of this book. You will need only a couple of sources of
data at the same time.

Need More Review? Data Migration tool

At https://docs.microsoft.com/en-us/azure/cosmos-db/import-
data you will find detailed information and a step-by-step
procedure for using this tool with each one of the sources.

Describe Azure Storage
Different types of storage are grouped under the Azure Storage umbrella,
similar to how Cosmos DB can contain different types of data, depending
on the API defined for the database.

However, though the API selection defines the content for the entire
database in Cosmos DB, things are different in Azure Storage. You have
one Azure Storage account, inside which you could have different kinds of
storage, even more than one of the same type. We will describe most of
them, but remember they are all under the same account definition.

Since you do most of the configuration in the account itself, and not for
each individual repository element, let us examine the generic part first, and
then we will describe each one.

https://docs.microsoft.com/en-us/azure/cosmos-db/import-data

The entire storage platform serves over the HTTP and HTTPS protocols,
making the content reachable from almost any platform. Like the other
Azure services, the storage service ensures high levels of availability,
replicated persistence, and scalability.

Performance levels
Azure Storage supports two performance levels:

Standard This level is the most used, and also the cheaper one. The
Standard level is supported in the back end by magnetic drives. This
level can be accessed by any client from any connection, using the
proper credentials.
Premium This level is backed by SSD drives, which ensure better
responses in general. However, this level is reserved for virtual
machine disks like those disks with intensive read/write operations,
such as disks used by virtual machines for SQL Server, or other
database engines with huge workloads, and for blobs. In the near
future, the Premium level will be enabled for Azure Data Lake as
well, since it is in preview as of this writing.

Account types
Many different kinds of accounts are available, and the right selection
depends on the kind of data you want to store and the processes you will
run on it.

General-Purpose v1 This was the first type of storage account in the
Azure Storage universe. You can still find this option in legacy
configurations. You should use v2 now since it has so many more
capabilities. In fact, v1 is not recommended at all for data analysis.
General-Purpose v2 As already explained, this is the preferred
option. It includes some specific configuration that enables it to work
with huge amounts of data for big data processes, like hierarchical
storage for Azure Data Lake, which we will discuss later in this
chapter.
BlockBlobStorage This account is used with the Premium level to
store binary content with or without the ability to append data in some

stored elements. For the Standard level, the same type of content is
stored in General-Purpose v2.
FileStorage This type is also used with the Premium level to store
entire files with or without append functionality. For the Standard
level, the same type of content is stored in General-Purpose v2.

Service exposition
Depending of the type of content served, Azure uses different URL patterns
for access, as you can see in Table 3-7.

Table 3-7 Service URL by service data content

Data type Service URL

Blobs (all
types)

https://<Name of your storage
account>.blob.core.windows.net

Disks (internally managed by VMs)

Files https://<Name of your storage
account>.file.core.windows.net

Queues https://<Name of your storage
account>.queue.core.windows.net

Tables https://<Name of your storage
account>.table.core.windows.net

Access tiers
When you define your storage account, you can choose one of the following
access tiers:

Hot Access tier Choose this one if you will use the store frequently
for read and/or write access. This tier is optimized for this purpose;
access is cheaper, but storage costs are higher. Therefore, it is better

not to use this tier with big segments of data unless you need to access
it frequently.
Cool Access tier This tier is better for storing data that has low access
frequency and is stored for long periods of time (greater than 30 days).
Storage cost is cheaper, but access is more expensive than with the
Hot Access tier.
Archive Access tier This tier is intended for longtime storage with
almost no access. Storage costs are cheapest but access costs are the
most expensive when compared to the other tiers. Consider using the
Archive Access level when you do not plan to modify your data or
access it for more than 180 days.

 Exam Tip

You can implement lifecycle management for the data automating
changes between tiers, which is detailed here:
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-lifecycle-
management-concepts?tabs=azure-portal.

Replication options
Like other Azure services, Azure Storage protects your data by using
replication mechanisms. For storage, different replication configurations are
available:

Locally redundant storage (LRS) With this option, the data is
replicated in three different places inside the same datacenter. A
failure in one disk in the datacenter is covered by the other two, which
automatically replace the damaged one (and a new disk is provided to
keep the data again in three places). However, a catastrophic
circumstance in the datacenter means loss of the data.

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-lifecycle-management-concepts?tabs=azure-portal

The write process in this option is managed in a synchronic way. This
means that the system will notify you of a successful write only when
the three copies are updated.

Zone-redundant storage (ZRS) This option replicates the data in
three different availability zones in the same region. Each zone is
independent from the others at the hardware and base service levels,
like power, network, and so forth.
Like LRS, the write process is synchronous for the three availability
zones.

Geo-redundant storage (GRS) With this option, LRS is expanded
with another LRS but placed in another geographical region. The
primary LRS is written synchronously, and then the data is sent
asynchronously to the second LRS, which repeats the synchronous
process in the second region before confirming the second phase as
committed.
Geo-zone-redundant storage (GZRS) This option is identical to
GRS except that there is a primary ZRS, with a secondary LRS. As of
this writing, this option is still in preview.

Practice Creating a storage account
You can create a storage account by following these steps:

1. In the Azure portal, select your desired resource group and click
Add.

2. Type Storage Account in the search box, select it in the results,
and click Create.

3. Complete the following settings for each page in the wizard:
A. Basics With the subscription and resource group selected,

enter a name for the account, which must be globally unique;
select the same location as your resource group; for
Performance (Standard Or Premium), select Standard; for
Account Kind, Replication, and Blob Access Tier, select the
values Standard, Storage v2 RA-GRS, and Hot, respectively
(those are the defaults).

B. Networking Leave the default values. Enabling the public
endpoint does not mean anonymous access, and there is no
risk in choosing this option. Moreover, sometimes you will use
the storage account as a source for public content like images
in websites and public shared documents with specific
published links. Using Microsoft network routing enables the
fastest connection possible.

C. Data Protection Here you can enable options to delete content
or not delete it (by default, deletion is not enabled). You also
have the option to use versioning for the content.

D. Advanced Here you can configure specific behaviors for
secure connections, such as admitting only HTTPS
connections or encrypted transfers; enabling anonymous
access to binary storage; specifying the minimum level
required for Transport Layer Security (TLS); using large files
storage, for higher performance levels, up to 100 TiB; using a
hierarchical namespace, which enables your storage to be used
with Azure Data Lake Gen2, for high-volume data analysis;
and Network File System (NFS) Protocol v3, for specific uses
in Azure Data Lake.

 Exam Tip

NFS v3 is enabled only at the subscription level and is
requested from Microsoft support.

E. Tags As usual, you can assign custom labels and values for
your reference.

F. Review + Create As in other wizards, a list of your selected
configuration parameters is displayed, enabling you to create
the storage by clicking Create.

Describe Azure Table storage
The first storage type we will discuss is Azure Table storage.

Azure Table storage is based on the key-value principle but extends it
with specific capabilities to manage the stored data more efficiently.

Inside the table you store entities, which, having a structure definition,
do not need to adhere to a specific schema. They could have different
structure definitions between entities.

However, certain conditions must be met:
The entities must have the following:

Partition key
Row key
Timestamp

The entities should not have more than 255 properties, including the
three previously defined, which leaves you up to 252 key-value pairs
to use.
The entity must not be bigger than 1 MB in size (2 MB for the
Cosmos DB Table API).

You can use Table storage for saving entities and managing them if they
all meet these criteria.

Table Storage API
The Azure Storage Service can be accessed using a URL matching the
following pattern:
Click here to view code image
http://<Name of your storage account>.table.core.windows.net/<table
name>

This URL could be used by any platform using the OData specification
for the calls in REST format.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg159a

Need More Review? OData specification

You can review the OData specification at www.odata.org.

Tools and libraries for different programming languages and developer
tools are available for you to work with OData. Among them is an
extension for Visual Studio Code for OData URL manipulation named
vscode-odata; Apache Olingo, if you want to use Table storage from Java;
and Azure Storage client libraries for .NET, for use directly in .NET
Framework or .NET Core developments.

 Exam Tip

Table storage management has been moved from the Azure Storage
client libraries to a new namespace, to integrate the classes with
Cosmos DB: Azure Cosmos DB Table API.

The PartitionKey value and the RowKey value must be of the string
type. Timestamp is a date value (which is updated automatically by the
storage engine). You can assign any text to the partition key in order to
identify your entities. For example, say you want to store information about
your preferred music recordings. You can use the words “Vinyl,” “CD,”
“Streaming,” and “File” as partition keys to identify the type of media. At
the same time, you can have other entities with a “Performer” partition key
to store information about the musicians. All of these entities will be stored
in the same table, but you can clearly identify each of them as different
types of information.

Notice that the partition key not only groups your information but is also
used by the storage service to manage segments of the information, or

http://www.odata.org/

partitions. A partition will always be managed by a partition server, and one
server could manage several partitions. There are factors to take into
account when you design the storage, since there could be a partition with
frequently requested data and you can improve the situation by distributing
the partitions. For hot data, consider designing more than one partition key
to facilitate the replication and distribution of data.

In Table 3-8 and Table 3-9, we show two simple examples.

Table 3-8 Recording entity example

Property Name Value

PartitionKey CD

RowKey The Four Seasons

Year 1974

Performer Vienna Philharmonic

Style Baroque

Tracks Spring

Summer

Autumn

Winter

Table 3-9 Performer entity example

Property Name Value

PartitionKey Performer

Property Name Value

RowKey Vienna Philharmonic

Country Austria

The API used to manage information with Table storage exposes
methods to retrieve entities by their partition and row keys. However, the
Table Storage API has no way to search information by other properties;
you must traverse the items, one by one, to get them and see if the entity
matches your requirements. Or you can use an enhanced API to translate
the query to an encoded OData string like this:
Click here to view code image
http://<Name of your storage account>.table.core.windows.net/<table
name>()?$filter=
PartitionKey%20eq%20'CD'%20and%20Style%20eq%20'Baroque'

This example will get all the CDs of Baroque style.

 Exam Tip

Using the Azure Storage Table API for .NET, you can query the
elements by using LINQ syntax, which will be translated to OData
query before execution.

Another way to perform a search in the content of the Azure Storage
entities is by adding another Azure service: Azure Cognitive Search.

Note Azure Cognitive Search

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg160a

We refer to Azure Cognitive Search in Table 3-5 when explaining
the various services using the NoSQL data store types.

Practice Creating a table in Table storage
To add Table storage to your storage account in the Azure portal, follow
these steps:

1. In the Azure portal, navigate to your resource group and the storage
account inside it, or select your storage account from your
dashboard if it appears there.

2. On the Overview page, click Tables to open the Tables page of the
Tables service.

3. Click the Table button at the top and enter a name for your table.

Once created, the table will appear in the list, and the specific URL
generated to point to the table will be displayed.

Using the Storage Explorer to manage your data

Note Storage Explorer preview

As of this writing, the Storage Explorer in the Azure portal is a
preview version. This means there might be some changes
between what is explained here and what you see.

Using the Storage Explorer, you can view, add, and work with your data in
any of the storage services you have in your account—including, of course,
tables. Click Storage Explorer on the Preview page of your storage account
in the left-hand toolbar, and a tree view will appear, like the one in Figure
3-5, with the various storage types and the containers defined in each one.
At this time, you will have only the table you created.

Figure 3-5 Storage Explorer list

If you select the table you already created, you have query, add, edit,
filter, and other options. Click Add to enter a new entity in the table in a
window to the right of your page. You must enter a partition key and a row
key plus one or more custom properties by clicking Add Property.

Let us test the Add Entity functionality by using the data from Table 3-9
to add an entity for Performers, as demonstrated in Figure 3-6. By clicking
the Insert button at the end of the panel, you add the new entity.

Figure 3-6 Storage Explorer Add Entity

Querying the table uses a multifilter pattern. When you click Query, the
filters for PartitionKey and RowKey are automatically enabled, allowing
you to enter values and select the compare operation you want to perform.

You can remove any of the properties to search entities, or add more
properties to evaluate in the search, including the automatically generated
Timestamp property. With the Column Options button, you can choose and
reorder the columns you want to display.

 Exam Tip

Remember: Table storage is a heterogeneous storage. Different kinds
of entities can be stored in the same table. Look at Figure 3-7, where
you can see both previously defined samples stored in the table.

Figure 3-7 shows two different entities stored in the same table, with
different schemas.

Figure 3-7 Different entities in a table

Connecting to Table storage
No matter what technology you use to manage your data in Table storage,
you will need at least two pieces of information to reach the store: the
storage account name, which you define when you create the account, and a
key.

You can get the key from the Azure portal in this way:

1. Navigate to your resource group and select your storage account.
2. In the left toolbar, look for the Access Keys option under the

Settings group. There you will find the name of your account and
two different keys with their corresponding connection strings.

Some SDKs and connection libraries are capable of parsing the
connection string and getting the entire connection information required
from there. In other cases, as already mentioned, you can use just your
storage account name and one of the keys.

There are two different keys that allow you to share one of them if
necessary while keeping the other reserved for secure access. In the same
page where you get the keys, you have options for key renewals, which
immediately invalidate the preexisting one.

Two HTTPS protocol URLs are provided for each storage account
service, using your storage account name as part of the URL. With Table
storage, they look like this:
Click here to view code image
https://<Your_Account_name>.table.core.windows.net/
https:// <Your_Account_name>-secondary.table.core.windows.net/

Describe Azure Blob storage
When you must store binary information, images, sounds, video, or large
data in different formats and schemas, you should use Azure Blob storage.

Azure Blob storage is the preferred place to have your big data
information, and it is where Data Lake, HDInsight, and other huge data
processes store the data. Blob storage is also the option used by backup
processes, and it is used to store logs by other PaaS Azure services.

As with the other services available from a storage account, the data is
reachable by the HTTP and HTTPS protocols, as well as the REST API.

Blob organization

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg163-1a

Since a lot of elements can be stored in Blob storage and thousands, or even
millions, of different objects can be stored in it, you will probably want to
organize those elements in some way. Blob storage allows you to maintain
your data inside containers.

Each container can be defined with either private or public access and
will be reached by a URL following this structure:
Click here to view code image
https://<Your_Account_name>.blob.core.windows.net/<Container_name>

After creating your container, you can assign metadata to it by adding
key-value pairs, which can be used to organize the various types of content.
A blob can store up to 5 PiB of information (4,5035,996 GB), and there is
no limit to the quantity of blobs inside a container. One blob could have up
to 50,000 blocks of 100 MiB (104.86 MB) each.

As you can see, Azure Blob storage is not a limitation for huge data
volumes, and it can be used in data analytics, artificial intelligence (AI), or
Internet of Things (IoT) storage where high volumes are expected.

Types of blob content
You can store your data in three different types of content depending on
their usage:

Page blob Structured as pages of 512 bytes, this kind of storage is
intended for virtual disk images but can be used for any binary
information that must be retrieved in small or even big chunks, mostly
for random read and write operations. Applications using indexed data
to manage information in arbitrary segments can use the rich REST
API for page blobs to maintain the information in Azure Storage.
Another good example of using this kind of storage, which uses it
internally, is Azure SQL Database, described in detail in Chapter 2.
Block blob This kind of storage is used for big data storage, and it is
processed as segments with one id for each, called the Block ID. The
blocks can be different sizes, and each blob can contain up to 50,000
blocks. You can add, update, or delete blocks inside a blob. Since
several blocks can be involved in a single operation, commands exist

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg163-2a

for committing the entire operation. Moreover, single blobs can be
updated in a one-step operation, depending on their size and the
service version selected for the storage a count.
Append blob This is a special kind of Block blob that is optimized for
sequential writes. That means you can add content to the end of the
blob but neither update nor delete content.

Practice Creating a blob container
In this practice, you will create a container with private access.

To create the container:
1. Using the Azure portal, navigate to your desired resource group and

click Storage Account.
2. On the Overview page, locate the Containers tile and click the link

for the Containers title.
3. Click the Container button and type a name for your container (for

this sample, type cont-1); leave the access set to Private.
To add metadata to the container:

1. In the list you will see the container you just created. Click the
ellipsis button at the right of it and select Edit Metadata.

2. Add a key and a value to it (for this sample, use Type as the key and
Images as the value).

Storing data for data analysis
When you create a storage account using the General-Purpose v2 tier, you
have the option to activate the hierarchical namespace. By doing so, you
enable Data Lake Storage Gen2, thus preparing the storage to manage the
files and other content in hierarchy structures.

The hierarchical structure is like a folder structure on a hard disk. It
allows you to group and manage content without preprocessing it, since the
content classification is done by the hierarchy itself. However, keep in mind
that blobs are flat structures, which means that folder operations are
physical and not just metadata operations, causing very high I/O when data
is huge.

Having the data organized in this way enables you to move, rename,
analyze, or delete entire sets of information at a time. Due to its specific
structure, the data stored inside Data Lake Storage could be accessed by
several data analysis platforms like HDInsight, Azure Databricks, or Azure
Synapse Analytics to the Hadoop Distributed File System (HDFS).

To reach the content, a specific Azure Blob Filesystem (ABFS) driver
has been implemented that is the core communication API for those
services and that can be used by any other platform as well. It is a different
approach than the original one for Blob storage, the Windows Azure
Storage Blob driver. The driver supports navigation inside the folders to
reach content using a URI implementation with calls like this one:
Click here to view code image
abfs://
<file_system>@<account_name>.dfs.core.windows.net/<path>/<file_name
>

where:
<file_system> corresponds to the container name in a Blob storage
account
<account_name> is the name of the storage account
<path> is one or more elements that define the hierarchical tree
<file_name> is the name of the file to manage

Note Securing the ABFS protocol

The protocol ABFS can be secured by using an SSL/TLS
connection as ABFSS.

Enabling hierarchical structure is more expensive than not enabling it.
However, since you will use the data intensively, having the structure
allows you to find the information you must manage more efficiently each

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg-165a

time you need it. Lastly, since the storage is cheaper than the data
transmission, you will incur lower data analysis costs by using Azure Data
Lake storage.

Need More Review? Blob driver

You can reach detailed information about the Blob driver for
Hadoop and Azure Data Lake Gen 2 at
https://hadoop.apache.org/docs/stable/hadoop-azure/abfs.html.

Using the Storage Explorer to manage your data
You can use the Azure Storage Explorer to manage Blob storage content in
a way similar to how you use it for Table storage.

Note Storage Explorer account access

Remember that you can reach the Storage Explorer from the
Overview page of your storage account, in the toolbar to the left
in the Azure portal.

Of course, in this case, you are not able to add new elements in the same
way you added entities in Table storage, since the content must be some
kind of binary data. Instead, you can upload content by clicking the Upload
button.

After you click Upload, a panel to the right of the page appears, asking
you to search for the file to upload in your local storage and if you want to
override an existing file in case it is already in the store. Expanding the

https://hadoop.apache.org/docs/stable/hadoop-azure/abfs.html

Advanced area, you can define other parameters, as described in Table 3-
10.

Table 3-10 Upload blob content advanced parameters

Authentic
ation Type

You can choose to use the authentication type or a storage
key to store the content.

Blob Type You can select one of these blob contents types:

Blob

Page

Append

Block
Size

For Block and append blobs, you have a list of available
sizes to pick from, between 64 KB and 100 MB.

Access
Type

By default, the storage account access type is selected, but
you can change it to another kind for this specific blob.

Upload To
Folder

Use to define a specific folder inside the container.

Encryptio
n Scope

The default container is selected, but you can choose
another scope if you already have created it.

After uploading the file, you can get a link to the file by using the Copy
Link button. The link will have the following pattern:
Click here to view code image
https://<Storage_Account_name>.blob.core.windows.net/<Container_Nam
e>/<File_Name>

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg166a

When you right-click the file, a context menu appears with the
following options, most of them self-explanatory:

Open
Download
Copy
Rename
Delete
Change Access Tier
Get Shared Access Signature
Acquire Lease
Create Snapshot
Manage Snapshots
Selection Statistics
Properties

Some options may not be self-explanatory:
Change Access Tier With this option, you can change the tier for
your content. For example, suppose you have data you need to use
frequently just this month, but you want to keep it there later in case
you need it. You can change the tier to Cold or even Archive and
reduce your bill.
Get Shared Access Signature This option allows you to create a
URL with specific authorization information. By doing so, you control
the access to data content inside your storage, even outside the
standardized content permission. Consider a case where you need to
share information with a provider during a limited period, or just with
read access for a single piece of content. A shared access signature
(SAS) is the way to meet this need. This option can be used with a
different kind of authentication mechanism, with specific actions, and
during a limited period.

Need More Review? Signature types

You can see the various access signature types and how to
manage them here: https://docs.microsoft.com/en-
us/azure/storage/common/storage-sas-overview.

Snapshots You have two options for managing snapshots: Create
Snapshot and Manage Snapshots. A snapshot in blob content is like a
version of that content. When you create a snapshot, a copy of the
current content is created, but it will not be visible in the container’s
list of content. However, if you use the Manage Snapshot option, you
will see the snapshots and the current version, and have the option to
remove, download, or even promote the snapshot as the current
version.
Properties You can add some specific information with this option,
such as content language or even metadata defined by you.

Azure Blob API
The main implementation for blob content management is the Blob service
REST API. With this API, you can manage the blob content via the HTTP
protocol from any client you prefer. All of the calls are URL-based calls to
the URL defined for the Blob storage service assigned to your account and
use this form:
https://<your_account>.blob.core.windows.net

Some of the calls can be performed as GET methods (to retrieve
information), and others as POST methods (to perform actions).

So, if you want to get the information about the containers in your
account, the call must be a GET to
Click here to view code image
https://<your_account>.blob.core.windows.net/?comp=list

https://docs.microsoft.com/en-us/azure/storage/common/storage-sas-overview
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg168-1a

Or, if you want to obtain the tags for a particular blob, you can get it
issuing a GET call to
Click here to view code image
https://<your_account>.blob.core.windows.net/<your_container>/<your
_blob>?comp=tags

Or, if you need to create an element, such as a new container, you must
perform a PUT call to
Click here to view code image
https://<your_account>.blob.core.windows.net/<New_Container_name>?
restype=container

Note API calls credentials

All the API calls require the proper credentials sent in the header
of the message by using the Authorization setting in the Headers
section of the call. There are different ways to prepare the header
content, depending on the environment you use.

In many cases, these elements can be obtained directly with some
specific libraries from the connection string defined for the blob.

For example, using the Azure Storage SDK for JavaScript - Blob
client library, you can open the connection by using a SAS
previously created. Then, you can create an object to manage the
content with something like this:

Click here to view code image
new
azblob.ContainerURL('https://$<your_account>.blob.core.windows
.net/
$<containerName>?$<sasString>',azblob.StorageURL.newPipeline
(new azblob.AnonymousCredential));

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg168-2a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg168-3a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg168-4a

 Exam Tip

Azure Data Lake can be accessed by using the abfs schema with the
Azure Blob Filesystem driver (ABFS), which is part of Apache
Hadoop and is implemented in several Hadoop versions from various
vendors.

Managing blob content from PowerShell
You can use the PowerShell Azure library to manage content in your blob
storage. The first step is installing the Azure PowerShell module, which you
can do following the steps described here: https://docs.microsoft.com/en-
us/powershell/azure/install-az-ps?view=azps-4.5.0.

Once the module is installed, you connect to your Azure account with
this command:
Connect-AzAccount

This command will open a web dialog box asking you for your Azure
credentials. After connection completes, information about your account,
subscription, and tenant will be available.

Execute the following command to retrieve a list of the storage accounts
in your current subscription:
Get-AzStorageAccount

In order to work with a particular type of storage, you must obtain a
context for the storage account. First, you need a variable pointing to the
account, using something like this:
Click here to view code image
$account=Get-AzStorageAccount -Name <Storage_Account_name> -
ResourceGroupName
<Resource_Group_Name>

https://docs.microsoft.com/en-us/powershell/azure/install-az-ps?view=azps-4.5.0
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg169-1a

Notice that you must indicate the account and the resource group, since
it is possible to have the same account name in different resource groups.

Once you have the variable for the account, you can get the context to
assign it to another variable:
$context=$account.Context

Then, you can upload content with the command Set-
AzStorageBlobContent, as in this example:
Click here to view code image
Set-AzStorageBlobContent -File "D:\temp\CompanyLogo.jpg" `
 -Container cont-1 `
 -Blob "MainLogo.jpg" `
 -Context $context

To see what content is in a container, you can issue a command like this:
Click here to view code image
Get-AzStorageBlob -Container cont-1 `
 -Context $context |select Name

Retrieving content from a container is similar but uses Get-
AzStorageBlobContent:
Click here to view code image
Get-AzStorageBlobContent -Blob "MainLogo.jpg" `
 -Container cont-1 `
 -Destination "D:\temp\CompanyLogoDwn.jpg" `
 -Context $context

Using CLI to manage blob content
In a similar way, you can perform operations with Blob storage by using the
CLI library. Remember that you have access to the CLI library directly
from the Azure portal by using Azure Cloud Shell, as you learned in
Chapter 2.

In Azure Cloud Shell, or a local command window or even PowerShell,
you use the standard az commands. With the CLI, you must define the

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg169-2a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg169-3a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg169-4a

authentication mode by using the following:
A connection string
A key
The auth-login parameter to indicate that you want to connect by
using Azure Active Directory credentials

For example, to get a list of the already uploaded content using
PowerShell commands, use something like the following:
Click here to view code image
az storage blob list --account-name dp900sa --container-name cont-1
--output table
--account-key <your_account_key>

.NET Client library for Blob storage
If you want to build a custom application for managing blob content, use
the Azure.Storage library to implement your app. The library contains
classes for managing blobs, and for creating and administering containers,
content, and so forth. The calls to the classes can be executed
asynchronously if required.

The most important classes are as follows:
BlobServiceClient This class is the core object for managing the
storage. The class contains methods for creating new containers,
getting references to an existing container, and so forth. To establish
the connection, you pass the parameter to the constructor by issuing a
connection string or by providing a URI and the access key.
BlobContainerClient Use this class to manage containers. Usually,
you obtain an instance of this class with the CreateBlobContainer
method of BlobServiceClient, or you can create an instance directly
by using one of the class constructors, which allow you to pass, in
addition to the container name, a connection string or a URI and
access key.
BlobClient Use this class to manage blob content. Again, you can
obtain an instance using a class method, such as GetBlobClient from

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg170a

BlobContainerClient, or create a new instance by using one of the
class constructors, which receive the container and blob name, along
with the usual parameters: connection string, or URI and access key.

Note Blob API samples

You can see the sample PowerShell code and a sample
application in .NET Core in the Blob Storage folder of the
companion content.

Describe Azure File storage
Another storage service included with your storage account is File storage,
also known as Azure Files. This service is like Azure blobs in the sense that
it allows you to store binary data as files, including hierarchical distribution.
Azure Files can act as a file share for on-premises applications, working
exactly like any other server file share. This is possible because Azure Files
implements the Server Message Block (SMB) protocol, which can be used
to connect to network resources and to map drives to external resources.

By using Azure Files, your company avoids having different versions of
the same file in different geographical locations, since you can use the
service as a centralized repository—for example, for standard document
templates.

Authentication
The Azure Files service uses the standard Azure role-based access control
(RBAC) to manage access permissions. The identification of the users, or
authentication, can be established by the following:

Active Directory Domain Services This is the on-premises Active
Directory of the enterprise. To use it with Azure Files, you must

synchronize it with Azure AD, implementing the Azure AD Connect
service or Azure AAD Federation Services.

 Exam Tip

Remember the following limitation when you are using on-premises
AD to manage authentication with Azure Files: computer accounts are
not allowed, since they have no representation in the Azure AD
replica. If you need to implement something like this, without using a
user account, you can solve the issue by creating a service account.

Azure Active Directory Domain Services In this case, the accounts
are managed directly in your Azure Active Directory implementation,
without a need for an on-premises AD.
Storage account access key As with any other service inside a
storage account, you can reach this by using any of the two API keys
generated for the account.

Important Access key permissions

Using the access key converts the current user to a super user,
without any restrictions. Be careful to use this authentication
pattern only in very special cases.

After you establish the authentication source, you will be able to assign
it as the authorization path for your Azure Files repository to manage
individual authorizations for files and directories via Kerberos. This is
something you assign at the storage account level.

Practice Enable Kerberos authentication from AD to a storage account
Here are the steps to enable Kerberos authentication in your storage
account:

1. Navigate to your storage account in the Azure portal. You can do so
by looking for your resource group and clicking the storage account
name there, if the storage account is not available in your
dashboard.

2. On the Overview page, click the Configuration link in the left
toolbar.

3. Select Azure Active Directory Domain Services (Azure AD DS)
under Identity-Based Access For File Shares.

4. Under Active Directory Domain Services (AD DS), you see a link
that displays a tab to the right, with a step-by-step procedure to link
your storage account to your AD.

Note Importance of Kerberos

We will not detail each step, since doing so is out of the scope of
this book. However, the next paragraphs explain the reasons to
use Kerberos.

Using a Kerberos key. Each time a user requires a resource from the
file share, the storage account must query the AD to see whether the user
exists and to which groups it belongs in order to look for the appropriate
permissions. To enable this, you must create an AD account for the storage
account. To do so in an on-premises AD, you may use a computer account,
but as already mentioned, there are no computer accounts in Azure AD.

Instead, you need to create an account such as a service account. And
for security reasons, a Kerberos key is required.

Then, follow these steps:

1. Define a Kerberos key for your storage account with a PowerShell
script like this:
Click here to view code image
#Connect to your Azure Account
Connect-AzAccount
$ResourceGroupName = "<Your_Resource-Group-Name>"
$StorageAccountName = "<Your_Storage-Account-Name>"
$KeyName="key1" # IMPORTANT: it must be one of the predefined
values by
ValidateSet. By default: key1;key2;kerb1;kerb2
New-AzStorageAccountKey `
 -ResourceGroupName $ResourceGroupName `
 -Name $StorageAccountName `
 -KeyName $KeyName
$k=Get-AzStorageAccountKey `
 -ResourceGroupName $ResourceGroupName `
 -Name $StorageAccountName `
 -ListKerbKey | `
 where-object{$_.Keyname -eq $KeyName}
Clear-Host
Write-Host "Copy the following key to use it for the storage
account in AD "
$k.Value

2. Ask your domain administrator to create a new account using this
information:

A. SPN: "cifs/<Your-Storage-Account-
Name>.file.core.windows.net"

B. Password: The key returned by the previous PowerShell script

Now that the account exists in the Azure AD, you have to turn on the
individual authorization feature. To do this, you must provide some
information about the account and the AD to the storage account in order to
link them.

For this, ask your AD administrator for the information about the AD to
complete the bolded values in the following script:
Click here to view code image

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg172-1a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg172-2a

Set-AzStorageAccount `
 -ResourceGroupName "<Your-Resource-Group-Name>" `
 -Name "<Your-Storage-Account-Name>" `
 -EnableActiveDirectoryDomainServicesForFile $true `
 -ActiveDirectoryDomainName "<Your-Domain-Name>" `
 -ActiveDirectoryNetBiosDomainName "<Your-Netbios-Domain-
Name>" `
 -ActiveDirectoryForestName "<Your-Forest-Name>" `
 -ActiveDirectoryDomainGuid "<Your-AD-Guid>" `
 -ActiveDirectoryDomainsid "<Your-Domain-Sid>" `
 -ActiveDirectoryAzureStorageSid "<Your-Storage-Account-
Sid>"

Need More Review? Account mapping information

You can look for specific account mapping information between
on-premises and Azure AD and file storage permissions here:
https://docs.microsoft.com/en-us/azure/storage/files/storage-files-
identity-ad-ds-assign-permissions.

Authorization
Once Kerberos is enabled, you can assign specific permissions to AD
groups or users. You can also assign AD groups or users to RBAC roles.
Doing so facilitates security management and is considered a best practice.

Note Authorization hierarchy

As you have probably read in many other places about
permissions assignment, to enhance security administration you
should avoid assigning permissions directly to users. This
process is prone to errors and difficult to maintain. If you use the
resource - RBAC - AD Group - user relationship, and a user
changes their work assignment inside a company, moving from

https://docs.microsoft.com/en-us/azure/storage/files/storage-files-identity-ad-ds-assign-permissions

the old AD Group to the newly assigned one changes the entire
permissions set for that user immediately. This relationship is
probably the most important best practice for security
management.

You have three basic RBAC levels:
Reader Read-only access
Contributor Read and write access, including renaming and deleting
items
Elevated Contributor A contributor but with special permissions to
manage ACL permissions at the SMB mapped level

Mapping an Azure file share to a local drive
From any computer you can map an Azure File storage resource under
certain conditions:

There is no blocking condition for TCP port 445, which is the port for
SMB 3.0.
Note that previous versions of SMB are not supported by Azure file
shares because of security reasons.

The user must have appropriate permissions to map drives on the local
computer.

If these conditions are met, you can use the standard net use command
to map a logical local drive to the Azure file share resource, as in the
following:
Click here to view code image
net use <Drive-Letter>: \\<Storage-Account-
Name>.file.core.windows.net\<FileShare-Name>
/user:Azure\<Storage-Account-Name> <Storage-Account-Key>

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg174a

 Exam Tip

Notice the net use command is using the storage account key to
perform the mapping. That way, a local administrator (a member of the
BUILTIN\Administrators group on the computer) can manage the local
permissions.

Need More Review? SMB protocol

To map an Azure file share to a Linux operating system, you
must add support for the SMB protocol, such as Samba. You can
find the steps here: https://docs.microsoft.com/en-
us/azure/storage/files/storage-how-to-use-files-linux.

If you want to map the resource to a macOS system, go here to
learn how: https://docs.microsoft.com/en-
us/azure/storage/files/storage-how-to-use-files-mac.

Azure File Sync
You are likely familiar with cloud file synchronization services such as
OneDrive for Live/Hotmail/Outlook accounts. The Azure File Share service
lets you synchronize content to local copies in your on-premises servers
exactly the same way you can with those services.

Common content for all the locations of your company—such as
document templates and standard contract forms—can be updated in an
Azure file share, and they will be updated automatically to the assigned
servers, making them easy to use, even when there is no internet
connection. This acts as a backup routine procedure, since documents
stored locally in servers will be automatically replicated to the Azure file
share.

https://docs.microsoft.com/en-us/azure/storage/files/storage-how-to-use-files-linux
https://docs.microsoft.com/en-us/azure/storage/files/storage-how-to-use-files-mac

Azure File Sync is an independent service from Azure File Share, but
both are required to keep local server files in sync. After you deploy an
instance of File Sync, you can define sync groups, each mapped to a unique
file share. Then, you can register servers to the Azure File Sync instance,
assign them to the sync group, and start the synchronization.

 Exam Tip

Registering servers requires installing and configuring the Azure File
Sync Agent in each server. Download the agent here:
https://go.microsoft.com/fwlink/?linkid=858257.

Skill 3.3: Identify basic management tasks
for non-relational data
Now that you know about the most important non-relational data storage
options provided by the Azure platform, we will review the ways to deploy,
manage, secure, and troubleshoot the most important non-relational data
storage options.

This skill covers how to:
Describe provisioning and deployment of non-relational data
services
Describe method for deployment including the Azure portal,
Azure Resource Manager templates, Azure PowerShell, and the
Azure command-line interface (CLI)
Identify data security components (e.g., firewall, authentication,
encryption)

https://go.microsoft.com/fwlink/?linkid=858257

Identify basic connectivity issues (e.g., accessing from on-
premises, access with Azure VNets, access from internet,
authentication, firewalls)
Identify management tools for non-relational data

Describe provisioning and deployment of non-
relational data services
Any of the services for non-relational workloads requires one or more
resources from the Azure platform. At a minimum, any service needs a
place to store the information, the network configuration to reach the
content, and the security to avoid nonauthorized use of the information.

As explained in the previous chapter, the Azure Resource Manager
manages the resources and coordinates the tasks for administering those
resources to implement the services. The process of deploying any of the
services involves supplying the Azure Resource Manager with the
appropriate parameters, after which you can proceed with the deployment.

Calling the Resource Manager with the parameters, as already explained
in the previous chapter, can be done in different ways: the Azure portal,
PowerShell, and the CLI, just to name a few. As with any other resource
deployment, the “message” to the Resource Manager is sent via a JSON
definition. As we discussed in Chapter 2, those definitions can be preserved
as templates, called ARM templates, to automate the process.

Note The ARM process

In the previous chapter we analyzed the structure and working
process for ARM templates. Refer to Figure 2-17 to review the
ARM process.

Describe method for deployment including the
Azure portal, Azure Resource Manager templates,
Azure PowerShell, and the Azure command-line
interface (CLI)
In this section, we will review how to deploy each of the resources with the
Azure portal and review the ARM template generated in each case.

Deploy Azure Cosmos DB
You already have a step-by-step procedure for creating a Cosmos DB
account in the practice “Creating a Cosmos DB account and database,”
earlier in this chapter. Here you are going to get the ARM template for it so
that you can evaluate the content and use it with other tools.

Practice Get the ARM template from your Cosmos DB account
From any resource you deployed, you can get the template for later use. In
this practice, you will get the ARM template for your Cosmos DB account.

1. Open the Azure portal at https://portal.azure.com.
2. Look for your Cosmos DB account in your subscription.
3. In the left toolbar, click Export Template. The source code of the

ARM template is displayed.
4. At the top of the page, click Download and save the file as

dp900cosmosdbARM Template.zip (the download file is
compressed by default).

5. Extract the files into a dp900cosmosdbARMTemplate folder.

Figure 3-8 shows the resources defined in the ARM template.

https://portal.azure.com/

Figure 3-8 Resources for a Cosmos DB account

The ARM template defines the values for each component, using the
Cosmos DB account name as a parameter, which the template concatenates
as unique name for each one. You can use the same ARM template to create
a new instance.

Important One Free Tier account per subscription

If you want to try any of the deployments in the next practices,
you must delete the previously created one, since it is using the
Cosmos DB Free Tier account, which is unique per subscription.

Practice Creating a Cosmos DB account from the Azure portal using the
ARM template

You can use this procedure with any ARM template, no matter which
resource we are talking about.

1. Open the Azure portal at https://portal.azure.com.
2. In the Search box at the top, type deploy and choose Deploy A

Custom Template. A page with links to some predefined templates
and an option to load a template from GitHub appears.

3. Click the Build Your Own Template In The Editor link.
4. Once in the template editor, click Load File.
5. Navigate and select your previously downloaded template.json file.
6. Click Save. Even though the button reads Save, in fact it will send

you to the deploy page, with the default parameter for the Database
Account name assigned.

7. You can change the name, or just deploy the Cosmos DB account
with the default name (provided you have no account with that
name, of course).

8. Click Review + Create.
9. Read the Azure Marketplace Terms, and then click Create to

proceed with the deploy.

Practice Creating a Cosmos DB account from PowerShell using the
ARM template

Deploying an Azure Cosmos DB using a template involves steps similar to
the ones you saw in Chapter 2 for deploying a SQL database.

Review the script used in that exercise, and notice it is just a matter of
changing to the Cosmos DB template when you execute the PowerShell
command for deployment in the following code:
Click here to view code image
New-AzResourceGroupDeployment -Name $Name `
 -ResourceGroupName $ResourceGroup `
 -TemplateUri $TemplateFile `
 -TemplateParameterObject
$paramObject

https://portal.azure.com/
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg177a

Try it for yourself.

Practice Creating a Cosmos DB account using ARM template with the
Azure CLI

As previously explained, when you are deploying different resources using
the ARM template, it is the template that defines the resource to deploy.

After the az login command, deploy a new Cosmos DB account using
the same template by issuing the following command:
Click here to view code image
az deployment group create --name <Name_of_the_Deployment>
--resource-group <Resource_Group_name> --template-file
<Path_and_File_name>
--parameters <ParameterName_1>=<Value_1> <ParameterName_2>=
<Value_2>

Deploy Azure Storage
We just reviewed different ways to deploy Cosmos DB and Azure Storage
accounts without using the Azure portal. Next, we will analyze different
approaches to perform similar deployments by using other tools.

PowerShell library for Azure
You can execute commands in PowerShell to manage Cosmos DB and all
the elements of a storage account.

Important Specific Cosmos DB library

The commands for Cosmos DB are not included in the az
module. To manage Cosmos DB from PowerShell, you have to
import the Az.CosmosDB module as well, with the following
command:

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg178-1a

Click here to view code image
 Install-Module -Name Az.Cosmosdb

The following PowerShell script creates a new Cosmos DB account:
Click here to view code image
Import-Module -Name Az
Import -Module -Name Az.Cosmosdb
Connect-AzAccount
 $resourceGroupName = "<Resource_Group>"
$locations = @("<Location_1>", "<Location_2>")
$accountName = "<Account_Name>"
$apiKind = "Sql"
$consistencyLevel = "Session"

New-AzCosmosDBAccount `
 -ResourceGroupName $resourceGroupName `
 -Location $locations `
 -Name $accountName `
 -ApiKind $apiKind `
 -EnableAutomaticFailover:$true `
 -DefaultConsistencyLevel $consistencyLevel `
 -EnableFreeTier:$true

If you want to create a database inside your Cosmos DB account, you
can do so with a command like the following:
Click here to view code image
$resourceGroupName = "<Resource_Group>"
$accountName = "<Account_Name> "
$databaseName="<database_name> "
New-AzCosmosDBSqlDatabase `
 -ResourceGroupName $resourceGroupName `
 -AccountName $accountName `
 -Name $databaseName

Notice you have different commands for creating the different kinds of
databases depending on the API Kind selected:

New-AzCosmosDBCassandraSchema

New-AzCosmosDBGremlinDatabase

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg178-2a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg178-3a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg179-1a

New-AzCosmosDBMongoDBDatabase

New-AzCosmosDBSqlDatabase

New-AzCosmosDBTable

There are also commands to get information, update, and remove
elements, like this one, which gets databases created in a Cosmos DB
account:
Click here to view code image
 Get-AzCosmosDBSqlDatabase -ResourceGroupName $resourceGroupName
`
-AccountName $accountName

Or this one, which gets information about all the accounts in a resource
group:
Click here to view code image
 Get-AzCosmosDBAccount -ResourceGroupName $resourceGroupName

Need More Review? PowerShell commands

You can see the complete list of PowerShell commands that are
Cosmos DB related here: https://docs.microsoft.com/en-
us/powershell/module/az.cosmosdb.

In the companion content, you will find a script with these
samples, named 02 Cosmos DB Management.ps1.

To manage Azure Storage accounts, the Azure PowerShell snap-in
offers several commands. The following practice shows the steps for
creating a new storage account for general Blob storage purposes.

Practice Creating a storage account and container using PowerShell
Open a PowerShell window or a PowerShell ISE instance.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg179-2a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg179-3a
https://docs.microsoft.com/en-us/powershell/module/az.cosmosdb

Note Power Shell ISE

Using Power Shell ISE provides you with a better editor
experience, since it implements IntelliSense, a multi-line editor,
and formatting facilities.

Proceed as follows:

1. Check you have the Azure snap-in installed in your environment:
Click here to view code image
Get-InstalledModule -Name Az

2. If there is no module for az, install it:
Click here to view code image
Install-Module -Name Az -AllowClobber -Force

3. Define the following variables (in the text and the script, our own
values are assigned):

A. resourceGroupName: dp-900
B. accountName: dp900sablob
C. accountKind: StorageV2
D. skuName: Standard_GRS
E. containerName: companyblobs

Click here to view code image
$resourceGroupName= "dp-900"
$accountName = "dp900sablob"
$accountKind="StorageV2"
$skuName="Standard_GRS"
$containerName="companyblobs"

4. Connect to your Azure account:

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg180-1a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg180-2a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg180-3a

Connect-AzAccount

5. Get the resource group information to obtain the default location:
Click here to view code image
$ResourceGroup=Get-AzResourceGroup -Name $resourceGroupName
$location=$ResourceGroup.Location

6. Create the storage account, using the variables defined in the
previous steps:
Click here to view code image
$storageAccount = New-AzStorageAccount `
 -ResourceGroupName $resourceGroupName `
 -AccountName $accountName `
 -Kind $accountKind `
 -SkuName $skuName `
 -Location $location

7. Create the Blob container. Notice that in the previous command we
keep the storage account in a variable to obtain the context for the
container.
Click here to view code image
New-AzStorageContainer `
 -Name $containerName `
 -Context $storageAccount.Context

8. After you complete these steps, check the new account in the Azure
portal.

Azure CLI
In the same way you use the PowerShell library to manage your non-
relational data storage, you can use the Azure CLI. You can execute CLI
commands directly in the Azure portal by using the Azure Cloud Shell, or
from your computer, by executing them from a command window,
PowerShell, or Windows Terminal. All the CLI commands begin with az,
which is the name of the executor.

Next, you describe the resource you want to work with:

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg180-4a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg180-5a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg181-1a

Cosmos DB
Storage

To see which commands you have available, you can use the argument -
h, as in
az cosmosdb -h

To create the Cosmos DB account, you must use procedure explained in
the previous chapter to use an ARM template.

 Exam Tip

Several ARM templates are publicity shared in GitHub for you to use.
They can be called directly from the az command line or from
PowerShell. You can use the Template URI directly as the argument of
the TemplateURI parameter, as in the following example:

Click here to view code image
az group deployment create --resource-group <my-resource-group> --
template-
uri https://raw.githubusercontent.com/Azure/azure-quickstart-
templates/
master/101-cosmosdb-free/azuredeploy.json

As an example, emulating the storage account creation with CLI will
look like this:
Click here to view code image
az storage account create --name <account_name> --resource-group
<Resource_Group_name>
-- kind <storage_kind> --sku <SKU_name> --location <Location>

Azure .Net Libraries

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg181-2a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg181-3a

Another API you can use to manage non-relational storage is the Azure
.NET libraries.

To create accounts, such as a Cosmos DB account, you can use the
Microsoft.Azure.Management.ResourceManager for managing ARM
templates. You can use the same library or the
Microsoft.WindowsAzure.Management.Storage library directly to create a
storage account from scratch.

The following code is an example of creating a storage account:
Click here to view code image
StorageAccountCreateParameters parameters = new
StorageAccountCreateParameters
(sku, kind, location);
StorageManagementClient storageManagementClient = new
StorageManagementClient
(credentials);
var resp = await
storageManagementClient.StorageAccounts.CreateAsync
(resourceGroupName, accountName,
 parameters
);
 parameters,
 cancellationToken
);

For other libraries for content management with ARM, see the earlier
sections on Azure Cosmos DB APIs, Table Storage API, and Azure Blob
API.

Need More Review? Azure .NET libraries

For more on Azure .NET libraries:

https://docs.microsoft.com/en-
us/dotnet/api/overview/azure/resources/management
https://docs.microsoft.com/en-
us/dotnet/api/overview/azure/cosmosdb

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg182a
https://docs.microsoft.com/en-us/dotnet/api/overview/azure/resources/management
https://docs.microsoft.com/en-us/dotnet/api/overview/azure/cosmosdb

https://docs.microsoft.com/en-
us/dotnet/api/overview/azure/storage

Identify data security components (e.g., firewall,
authentication, encryption)
Like any other resource in Azure, non-relational data stores use Azure
Security to secure your information and avoid unauthorized access,
physically or via the internet, with a series of secured elements. To
accomplish this, Azure implements the same multilayer security structure
described in the previous chapter and illustrated in Figure 2-20. Most of
these security components apply to Cosmos DB and Azure Storage as well.

Let us review some of the details for non-relational storage security.

Firewall rules
As is the case for any resource connected to the network, your storage will
be at risk if you do not secure it. You may want to use your account to share
content with external users or even use a file share to publish images and
other content to your website with anonymous access. Since a storage
account enables access to all networks by default (which means exposing
the content to anyone in the world), you must do so only in very specific
cases.

If you want to disable this option, you must navigate to your storage
account in the Azure portal, and from the left-hand menu, choose the
Firewalls And Virtual Networks option. On the resulting web page, you can
change the allowed access to Selected Networks, and then define the
networks to which you want to allow access.

A quick alternative is to add the current IP client access of the computer
you are using to access the portal in that moment. The IP address could
change from time to time, depending on your provider. You can add IP
addresses or Classless Inter-Domain Routing (CIDR) to authorize IP
ranges. Even when you change the allowed access from All Networks to

https://docs.microsoft.com/en-us/dotnet/api/overview/azure/storage

Selected Networks, the authorization for Azure services remains enabled by
default, allowing any Azure service from your subscription and other
subscriptions to reach the content (which, of course, you can disable the
authorization for Azure services if you want).

Need More Review? Azure Services with access

You can see the complete list of Azure services authorized by
default here: http://go.microsoft.com/fwlink/?LinkId=845585.

You have two other configurations you can enable that allow read access
from anywhere to logs or metrics. These last two options exist because
several Azure services may store log information in a storage account in
your subscription. We recommend creating a specific storage account for all
your service logs to enable the specific read permissions to just one isolated
storage. You could use the same account for monitoring data in the whole
subscription as well.

Finally, you can perform some routing configuration to change the
default Microsoft platform routing to a custom internet routing endpoint.
Such a change is intended for specific scenarios, since the routing provided
by Microsoft ensures reaching the resource from the nearest point in the
global network at any time.

Need More Review? Routing

To learn more about routing preferences, go here:
https://docs.microsoft.com/en-us/azure/virtual-network/routing-
preference-overview.

http://go.microsoft.com/fwlink/?LinkId=845585
https://docs.microsoft.com/en-us/azure/virtual-network/routing-preference-overview

As part of this section configuration, you can enable publishing
endpoints for the selected routing.

Secure transfer
Having the store encrypted does not ensure a secure data transmission. To
secure it, you must secure the communication between client and storage.
For this purpose, an Azure storage account provides the Requires Secure
Transfer option on the Advanced tab when you prepare a deployment. The
option exists in the corresponding ARM template as well and could be
changed in the configuration option of a preexisting account, as you can see
in Figure 3-9.

Figure 3-9 Secure transfer for a storage account

Enforce TLS version

To enhance the security in data transfers, Azure Storage uses Transport
Layer Security (TLS) communication. You can select the TLS version (1.0,
1.1, or 1.2) to use with your account, as you can see in Figure 3-9.

You must coordinate this configuration with that of any client
applications since any call using a lower TLS level configuration will be
rejected. We recommend that you use the latest version, because several
security best practices avoid using older levels.

Storage data encryption
Any content uploaded to an Azure storage account is encrypted. The
encryption occurs using an encryption key generated and assigned
automatically when you deploy an account.

Note Encrypt old data

Data stored prior to October 20, 2017, is not encrypted. You must
download and re-upload it to have the content encrypted.

As with any other resource with encryption, Azure storage encryption
allows you to use your own encryption key. To use custom keys, you must
store them in Azure Key Vault and configure the storage account
appropriately.

Need More Review? Encryption keys in Azure Key Vault

To see how to configure and store your own encryption keys in
Azure Key Vault, go here: https://docs.microsoft.com/en-
us/azure/key-vault/secrets/quick-create-portal.

https://docs.microsoft.com/en-us/azure/key-vault/secrets/quick-create-portal

With your custom keys stored in the vault, you can reconfigure your
storage to use them by navigating to your storage account and, in the left-
hand toolbar, selecting Encryption under Settings. You will see the
encryption type configured as Microsoft-Managed Keys and the alternative
Customer-Managed Keys option. If you decide to use a custom key, you
can assign it by using a URI or by selecting the key vault and the key.

The URI points to a key inside the Key Vault; it is not a URI to any
custom location. It must use the following pattern:
Click here to view code image
https://{keyvault-name}.vault.azure.net/{object-type}/{object-
name}/{object-version}

The advantage to using the URI is the fact that, for enhanced security,
you can assign object-version, which enables automatic key rotation.

 Exam Tip

Changing from Microsoft-managed keys to custom-managed keys will
encrypt new content when it is uploaded with the custom key. At the
same time, a background process will re-encrypt the existing content
with the new key.

Finally, consider that when you customize the encryption by using
Azure Key Vault, it automatically enables soft deletion and purge
protection, which can be enabled manually in the account configuration if
you use the Microsoft-managed option. However, using a custom key
forces the soft deletion and purge protection without an option to disable
them.

Data protection

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg185a

Your data is probably your most valuable resource. You have various ways
to protect it:

Replication Any storage account will have background replication
procedures. This capability is included in the service by default, but
you can change the type of replication you want to use for each
account—which can be one of the following defined for the entire
Azure platform, as we discussed in previous chapters. Just as a
remainder, here is the list of allowed replication configurations:

A. Locally redundant storage (LRS)
B. Zone-redundant storage (ZRS)
C. Geo-redundant storage (GRS)
D. Geo-zone-redundant storage (GZRS)
E. Read-access geo-redundant storage (RA-GRS)
F. Read-access geo-zone-redundant storage (RA-GZRS)

Policies You protect critical information and official documents by
using retention policies. With this configuration, you establish that, for
example, once a document has been uploaded to the storage, it can be
read as many times as needed but cannot be modified or deleted. You
have three different configurations for policies:

A. Time period retention With this policy, you define a number of
days, between 1 and 146,000 (close to 400 years).

B. Legal Hold For legal holds, each policy must be assigned a tag to
group the retained elements by some kind of identification. The
tag could be the contract number, project number, or region ID,
among others. None of the documents with the legal hold tag
defined can be modified or deleted until the legal hold is
removed.

C. Append enabled This applies to time period retention policies,
exclusively, as a supplemental configuration. Enabling this
allows the append blobs to accept more content but not deletion
(remember that append blobs are not updatable by random access
but are enabled for content extension).

Any policy you define is created in an unlocked state. By doing so, you
have the option to test and perform changes to it during your configuration.
However, we recommend that you lock the policy when it is tested to
enhance security of the data.

Note Immutable policies restriction

As of this writing, storage accounts with hierarchical namespace
enabled are not allowed for immutability policies. However, this
feature is in preview right now, so probably in the near future, or
even when you read this book, the feature will appear as publicly
available.

Authentication
As introduced earlier in this section, Azure Storage accounts manage the
authentication using different approaches, since the very first
implementations were done when Azure still did not integrate Active
Directory into the infrastructure. Moreover, there are cases when you need
to reach stored content without user identification but want to keep the data
secure at the same time, such as using copyrighted content in your website
or other content-generation tools.

To manage the authentication, the Azure Storage account allows the
following identification procedures:

Shared key Two different shared keys are automatically generated for
each storage account when it is created. Either of them can be
manually regenerated at any time and activated immediately. One of
these keys must be used in the header of any REST API call issued to
manage data in the storage. Most of the API implementations, like
.NET Azure Storage libraries, make it easy to add the authorization
key to the calls, either by assigning it or by using the connection
strings generated by the Azure portal side by side with the keys.

Shared access signatures By using a shared access signature (SAS),
you can refine the permissions assigned to a particular application or
connection.
When you generate a SAS, you get a specific URI pointing to the
storage resource plus a token with the specific identification and
connection permissions.

As usual, there are several ways to generate a SAS, including .NET
libraries, PowerShell, the Azure CLI, and the Azure portal itself.

In the Azure portal, the Shared Access Signature option appears in the
left-hand toolbar of the storage account. The process allows you to
define the permissions and which services they are applied to.
Moreover, you can specify range of IP addresses you want to
authorize, as you can see in Figure 3-10.

Figure 3-10 Secure access signature generation

The following is a list of the configuration options in the Azure portal;
the same options are available when you are using other creation methods.

1. Allowed Services Here you define to which services the signature
has permissions. They could be any of these:

A. Blob Storage
B. File Share
C. Queue Storage
D. Table Storage

2. Allowed Resource Types Here you can stretch the permissions
inside the allowed service by specifying which kind of API access
the SAS allows—that is, if you define Object, only the API part that
manipulates specific objects can be used:

A. Service The entire service can be used.
B. Container Only the container can be used.
C. Object The permissions are granted to objects.

3. Allowed Permissions With these options, you can refine the
permissions enabled for the SAS:

A. Read
B. Write
C. Delete
D. List
E. Add
F. Create
G. Update
H. Process

4. An option that enables deleting versions of objects (when
versioning is enabled).

5. Start and End Date and Time These values must be completed,
but you can define an end date far in the future.

6. Allowed IP Addresses Here you can identify an IP address, or a
range of IP addresses, allowed to reach the resource. You can leave
this empty, which means you want to allow any connection.

7. Allowed Protocols By default, only the HTTPS protocol is
enabled, but you can enable the less secure HTTP as well.

8. Preferred Routing Tier This option allows you to select the
connection routing tier. The option appears enabled if you have
published the endpoints in the firewall section.

When you click the Generate SAS And Connections String button, you
get the various connection strings for your selected services, each one with
the SAS assigned, plus the SAS in a separate text box:
Click here to view code image
?sv=2019-12-12&ss=b&srt=c&sp=rwdlacx&se=2120-08-
25T03:00:00Z&st=2020-08-25T03:00:00Z
&spr=https&sig=K4kxlpdiU1muUCmKKtTzvl0KrUNc151pNlt%2F8Rnh8Ac%3D

Azure Active Directory A subscription associates an Azure Active
Directory where users can be included. Sometimes users are created
inside the directory, sometimes a company uses the Azure AD
Connect service for synchronization between on-premises AD and
Azure, and other times a company uses just Azure Active Directory
for the enterprise.
You may want to use external authentication providers, like Windows
Live, to enable external users to reach part of your storage. For those
cases, Azure Active Directory centralizes the authentication
procedure.

Applications reaching data using this kind of authentication must
adhere to OAuth-Bearer specifications to perform authentication calls.

Need More Review? OAuth-Bearer

The OAuth-Bearer specification is described in RFC 6750,
which you can read here: www.rfc-editor.org/rfc/rfc6750.txt.

For detailed information about how an application must
implement the OAuth-Bearer specification to reach Azure
Storage content, go here: https://docs.microsoft.com/en-
us/rest/api/storageservices/authorize-with-azure-active-
directory.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg188a
http://www.rfc-editor.org/rfc/rfc6750.txt
https://docs.microsoft.com/en-us/rest/api/storageservices/authorize-with-azure-active-directory

Azure Active Directory Domain Services (for File Shares) As
already explained, for File Shares a special configuration is
implemented to manage permissions over the SMB protocol. Refer to
the subsection “Authentication” in the “Describe Azure File Storage”
section, earlier in this chapter.

Authorization
As with most of the Azure resources, you assign permissions by using
RBAC. You can have generic roles for the entire storage account, specific
roles for some of the elements, like blobs or table storage, and some
specific functional roles. Here are some examples:

1. Generic
A. Reader and Data Access Members of this role can access data

in the entire storage account by using the secure keys, but they
cannot create or delete anything.

B. Storage Account Contributor Members of this role can
manage the entire account, such as regeneration of access
keys, and creation of new elements inside the account,
including containers and data.

2. Blobs
A. Storage Blob Data Contributor Members of this role can

manage objects inside the blob storage.
B. Storage Blob Data Owner Members of this role can manage

objects and permissions and even delete the blob storage.
C. Storage Blob Data Reader Members of this role can only list

content and read the blob content.
3. Special

Data Lake Analytics Developer This role allows members to
manipulate jobs, as well as read and store data, but does not allow
them to create new elements such as containers. They do have

permissions to manage hierarchies. You can assign any AD user to
any of these roles to enable the permissions needed. As usual,
remember it would be better to add AD groups to RBAC roles, and
then manage user membership to groups at the AD level, to
simplify security management.

Identify basic connectivity issues (e.g., accessing
from on-premises, access with Azure VNets, access
from internet, authentication, firewalls)
Having storage in Azure implies that you establish and keep connections to
remote servers to be used whenever you need them. That means you must
be prepared for some interruptions and be able to recover from those events.
Sometimes, for security reasons, you do not want to expose your data
directly to the internet. Moreover, legal restrictions, such as international or
local laws protecting personal information, prevent you from using non-
relational data storage.

As you saw earlier in this chapter, the elements described here apply to
Azure Storage and Cosmos DB as well. Let us look at the most important
issues you may encounter in each scenario and how to diagnose them.

Accessing directly from the internet
As with any other internet resource utilization, you may have connection
failures from time to time. Any application using Azure Storage must have
some resiliency procedures and must manage retry routines to minimize
impact.

With a persistent connection failure, you can use some tools to diagnose
the problem:

Fiddler This third-party tool, created by Telerik and available at
www.telerik.com/fiddler, allows you to investigate the data flow and
communication to any client. The tool analyzes the traffic using the
HTTP and HTTPS protocols. You can use it to analyze the headers
and responses in HTTP/S calls to see how they behave. You can use

http://www.telerik.com/fiddler

Fiddler to capture all the traffic or to execute specific calls by using its
composer option.
In the capture tool, you can filter the data by URL. You do so using
your storage account name, which is included in the URIs as
previously described (see Figure 3-11), to analyze what is going on
when you call something from your storage.

Figure 3-11 Filtering Fiddler trace

The following is a sample of the kind of information obtained by
Fiddler, where you can see specific information about the certificate
used in the connection:

Click here to view code image
Secure Protocol: Tls12
Cipher: Aes256 256bits
Hash Algorithm: Sha384 ?bits
Key Exchange: ECDHE_RSA (0xae06) 256bits
== Server Certificate ==========

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg191a

[Version]
 V3
[Subject]
 CN=*.dfs.core.windows.net
 Simple Name: *.dfs.core.windows.net
 DNS Name: *.dfs.core.windows.net
[Issuer]
 CN=Microsoft IT TLS CA 4, OU=Microsoft IT, O=Microsoft
Corporation, L=Redmond,
S=Washington, C=US
 Simple Name: Microsoft IT TLS CA 4
 DNS Name: Microsoft IT TLS CA 4

Microsoft Network Monitor (NetMon) NetMon is a useful tool for
network analysis, used since Windows for Workgroups in the last
century. NetMon has had no updates since 2010, but it can still be a
good choice if you know how to use it. The same goes for Microsoft
Message Analyzer (retired in 2019).
Wireshark This third-party tool (a free download) is one of the most
detailed network analyzers available. It inspects network traffic at a
very low level, showing you the information at the package level of
the traffic, including source, destination, protocol, data, and so forth.

Note Message identifications

When you need to see what is going on in your network, it is
good to know precisely which messages are important.

API libraries like the Azure Storage client library, for example,
assign a unique ID for each call, the Client Request ID. This
value appears as x-ms-client-request-id in the header of a call.

When the library needs to repeat calls due to some failures, it
uses the same id, so in the trace you can see more than one
message with exactly the same content, x-ms-client-request-id
included.

The server responses have unique IDs as well, but in this case,
each reply from the server will be with a different ID. Those
server IDs appear in the header as x-ms-request-id.

Using private connections
For privacy reasons, sometimes you must establish private connections
between client applications and resources. These are the ways you can
implement this:

Private virtual networks To increase connection protection for your
data, you can use virtual private networks (VPNs). There are several
ways to implement the connection to VPNs, but those methods are out
of the scope of this book and will not be discussed here. The important
part is that you must have the virtual network defined in your Azure
Infrastructure.
Assuming you have the VPN implemented, from the storage account
point of view you just need to select the allowed access in the firewall
and virtual networks section of your storage account (even more than
one), as you can see in Figure 3-12.

Figure 3-12 Using virtual networks

Private Endpoint You can assign an IP from a virtual network to
your storage account to control the connection to those resources. This
is useful when you do not want to allow connections from other Azure
services or external connections.
A private endpoint can be used, as an example, from a virtual machine
connected to the same virtual network. Or you can reach it from a
secured VPN connection using a VPN gateway or Azure
ExpressRoute.

A private endpoint could have a DNS name assigned to easily locate
the resource.You can create a private endpoint using the Private
Endpoint Connections option in the left-hand toolbar of your storage
account. When creating a private endpoint, you must identify the
subscription, resource type (in this case,
Microsoft.Storage/StorageAccounts or
Microsoft.AzureCosmosDB/databaseAccounts, since there are private
endpoints for different services, and each endpoint must specify which
service it is for), the name of the resource (the storage account or

Cosmos DB account name), and the sub-resource (blob, table, and so
on).

Then, in the Configuration step, you select the virtual network and
subnet, and then enable or disable the private DNS integration option,
which lets you select or create a private DNS zone.

Authentication issues
Other than the anonymous access allowed for certain containers to bring
resources to public internet sites, Azure Storage usually requires
identification.

As already explained, a storage account allows access by using Azure
AD on the cloud or in sync with on-premises storage keys or by shared
access signature.

Each one can present different issues:
Storage Key The most common issue here is using the wrong key.
Note that you could have a type mismatch, which you can avoid by
copying the key from the Azure portal. However, sometimes the
protocol used to establish communications can generate problems.
You avoid most of them since the keys do not contain special
characters, but also make sure that there are no decoding/encoding
problems using REST API calls.
Finally, the keys can be changed or rotated. To avoid misuse, try to
expose just one key and reserve the secondary one for administrative
and recovery tasks.

Azure AD Issues using this authentication method are the same as any
IT team would find with any other application, resulting from group
membership errors or other Active Directory misconfiguration. Take
special care when making the RBAC assignment. A user or a group in
the wrong role may have no rights to manage data in the storage or
may have more rights than they need.
The calls to the API with user authentication require using an Auth
token, and the client application is responsible for obtaining it and
implementing the appropriate procedures to manage the requirement

—including, when necessary, the steps to process multifactor
authentication (MFA), which has become a standard for many AD
users. A special case is when you need to perform calls from an
unattended application or service. In this case, if you prefer not to use
the storage keys, you must define an Azure managed identity. This is
not a user but a combination of ID and key, which can be obtained for
some Azure resources, like virtual machines, Azure functions, and
some other Azure services. A managed ID is a combination of three
codes: a tenant id, a client id, and a secret word.

Shared Access Signature If you reviewed the procedure to create a
shared access signature, you know that you must define specific
permissions for read, write, and so forth; the IP or IP range you want
to authorize; and other parameters. If a call does not adhere to the
specific configuration, a Forbidden message will be returned. There is
no option for changing this by modifying part of the signature, even
when you can read part of it, like the start and end dates, that are
human-readable. The key at the end of the signature is generated using
the specific configuration and will not match the change. In such a
case, only a new SAS can solve the problem.
Azure AD with SMB Here, remember that the authorization will be
managed in the on-premises side. When creating a map to a File Share
resource, you use one of the storage keys in the mapping procedure.
But user access is something managed by Active Directory in sync
with Azure Active Directory, as explained earlier. One element to
consider is the fact that, once the on-premises computer has the
mapping restart, the map will be lost unless you mark it as Reconnect.
However, doing so requires the access key, which cannot be stored
with the net use command. To store the map, you must add the
credentials to the Windows Credentials storage of the server.

Here are the steps you must follow:

1. Open the Control panel in the on-premises computer that has the
file share mapped. You can reach it by typing Control panel in the
Search box of your operating system.

2. Click the User Accounts group.
3. Under Credential Manager, click Manage Windows Credentials.

4. Click the Add Windows Credential link and do the following:
A. Enter the URI for your file share in the Internet Or Network

Address box.
B. Leave the username empty.
C. Enter the storage key in the Password box.

Identify management tools for non-relational data
In this chapter, we showed you how to manage data using the Azure portal
and the Azure Data Explorer. Next we will explore other tools you can use
to manage the data inside your storage.

Azure Data Explorer
From the very beginning, we have needed a tool to manage Cosmos DB
data. Tasked with developing one, the Microsoft team considered it a good
opportunity to create an integrated tool instead of a specific one. That is the
reason they created the Azure Data Explorer.

Since it is a modern app, the Azure Data Explorer can be used in a
Windows environment and in macOS and Linux as well.

Note Latest version of the Azure Data Explorer

You can get the latest version of the Azure Data Explorer here:
https://azure.microsoft.com/en-us/features/storage-explorer/.

When you open the Data Explorer for the first time, a dialog box
appears that asks you to establish a connection, as shown in Figure 3-13.

https://azure.microsoft.com/en-us/features/storage-explorer/

Figure 3-13 Connect To Azure Storage dialog box

The options in the dialog box are as follows:
Add An Azure Account Here, enter your account credentials and you
will be able to use any of the storage accounts for which you have
permissions, in any subscription. A drop-down list lets you select the
environment—the standard Azure, or the special configured
environments for China, Germany, U.S. Government—or you can add
a new one for future implementations.
Add A Resource Via Azure Active Directory (Azure AD) Use this
option to access to the data layer of Blob or Data Lake storage with
permissions assigned by AD.
Use A Connection String Here, you will use a specific URL, either
with a storage key or a SAS.
Use A Shared Access Signature (SAS) URI You use the URI to
reach the data with a SAS.

Use A Storage Account Name And Key Here, you will reach the
entire content for the storage account, instead of the specific content
pointed to by a URI.
Connect To Public Blob Container Use this option to reach blobs
with anonymous access enabled.
Attach To A Local Emulator This is a useful option for development
purposes because it helps you avoid resource consumption during
development work.

With some options—like the first one, using an Azure account—you can
reach more than one subscription. You will see an option to enable your
desired subscriptions.

A tree with your storage accounts appears, where you can expand nodes
to reach the resources you want to work with, grouped by type—such as
Blob Containers, File Shares, Queues, and Tables.

For example, if you select a blob container, you can see the list of
contents in the container. You are presented with Upload, Download, Open,
Rename, Move, and Create New Folders options, as well as options for
permissions management. In the same way, you can manage content for any
of the storage types. You can execute many of the tasks performed by the
Data Explorer by using AzCopy, Cosmos Explorer, and Visual Studio
Explorer.

AzCopy
AzCopy is a command-line application, created to upload content to blobs
and file storage, that is useful for big content upload and download.

Note Latest version of AzCopy

As of this writing, the latest version is v10, which can be
installed from here: https://docs.microsoft.com/en-
us/azure/storage/common/storage-use-azcopy-v10. Notice that, if
you need to use AzCopy for table content management, you must
search for version 7.3.

https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azcopy-v10

AzCopy can connect using two different authentication methods: by
identity or by SAS.

If using an identity, you can use a user identity, a managed identity, a
client secret, or a certificate. Also, you can use one of the two storage keys
defined by the account.

If you use the SAS method, you can define the command using the SAS
as the source or destination parameter, as shown in this command, which
copies the content of a local folder into a blob:
Click here to view code image
azcopy copy "C:\local\path"
"https://<account>.blob.core.windows.net/
<container>/?<SASCode>" --recursive=true

 Exam Tip

One interesting feature of AzCopy is its ability to copy content
between two different storage accounts, even in different subscriptions,
without using a local copy.

Cosmos Explorer
If you have used the Azure Data Explorer recently, you saw that the tree
node for Cosmos DB is annotated as Deprecated. This is because a more
specific tool has been designed for managing Cosmos DB content: the
standalone Cosmos Explorer, which is a website provided by Microsoft in
the Azure.com domain.

To connect to your Cosmos DB account, you must have the appropriate
connection string.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch03_images.xhtml#pg196a
http://azure.com/

Practice Using Cosmos Explorer to manage your data
In the following practice, you will try for yourself the step-by-step
procedure to manage your Cosmos DB content.

1. Using the Azure portal, navigate to your resource group and select
your Cosmos DB account to see the Overview page.

2. In the left-hand toolbar, under Settings, click Keys.
3. Copy the primary or the secondary connection string.
4. Navigate to the Cosmos Explorer at https://cosmos.azure.com/.
5. Click Connect To Your Account With Connection String (you

can authenticate with an Azure account as well). You will see the
same interface you have in the Data Explorer in the Azure portal.

Visual Studio Cloud Explorer
Microsoft Visual Studio includes a tool for Azure management directly
from inside the IDE. From the View menu, select Cloud Explorer to display
a tool window to the left of your environment. You can see the Visual
Studio Cloud Explorer in Figure 3-14.

Once you enter your Azure credentials, the tool allows you to select
your subscription and resource groups you want to use. You also see an
icon that looks like a person at the top of the Cloud Explorer window that
you can click to manage your subscriptions and accounts.

https://cosmos.azure.com/

Figure 3-14 Visual Studio Cloud Explorer

The tool displays a tree where you can navigate your resources and
manage their content. For Azure Storage resources, you have menu options
to create new containers directly from the tool without opening the portal.

 Exam Tip

None of the extension tools for other applications, like Visual Studio
Cloud Explorer, can reach Cosmos DB data directly. In all cases,
Cosmos DB must be managed from Cosmos DB portal.

Chapter summary
Information cannot always be structured in relational databases.
Nonstandard chunks of information, like those contained in text
documents or generated by human interactions, can be nearly
impossible to normalize.

Huge volume data is hard to manage in relational databases due to the
difficulty of maintaining consistency and relationships.
Some sources of information can be delivered with different formats
and must be stored quickly to process them later.
Sometimes, it is important to store information as is, because different
ways to analyze it might become available in the future, and the raw,
unmodified data can be parsed differently, depending on the analysis
needs.
Azure provides several services for managing various types of non-
relational data.
Cosmos DB manages several non-relational data types. At the same
time, it is globally distributed, with high availability and good
performance, while implementing the elasticity principle.
Cosmos DB allows dynamically adding or removing regions without
taking services down.
You can configure Cosmos DB to implement different consistency
levels to balance securing data and fast responses.
To manage other non-structured data, which can have very big
volumes, Azure offers storage accounts.
Storage accounts provide different types of containers: tables, which
can exist in Cosmos DB as well; blobs; queues; and file shares.
Blob storage is the place to store high volumes of data in unstructured
form.
Blob storage is the preferred repository to keep information that may
be used by data analysis and artificial intelligence.
A blob storage in an account with hierarchical namespace enabled is a
requirement for Data Lake repositories.
A File Storage resource is the perfect solution for network shares that
are distributed and replicated in different locations.
The permissions to File Storage mapped resources can be managed
directly in the Azure Directory.

Any storage account has at least three copies of its content at any time.
Higher levels of protection can be configured to have evenly
distributed replicas.
The authentication process for a storage account can use keys, Active
Directory, or specific access signatures.
The entire communication with storage accounts is encrypted, and the
data is encrypted at the storage level as well.

Thought experiment
In this thought experiment, you can demonstrate your skills and knowledge
about the topics covered in this chapter. You can find the answers to this
thought experiment in the next section.

Adventure Works, the famous bicycles company, wants to evaluate the
use of their products by using information from cell phone companies using
data from the communication platform based on geographical distribution
of the users. This means registering the triangulation information of the
mobile antennas each cell phone is connected to at any time, as well as the
phones’ movements.

Moreover, the company decides to become global and wants to establish
an online store where any user, from all around the globe, has the option to
review the products, inquire about their details, and buy them.

Some countries have regulations about giving potential buyers detailed
technical information about the products; the information must be
published in specific formats, in different languages, and with the option to
be downloaded for later reading.

The company wants to have the same brochures, in different languages,
available from any country/region.

The orders from the customers must be processed in a central point in
the United States, but the information about the status of the production and
other order details must be available from any subsidiary around the world.

As part of the “Adventure Works sponsorship,” the company
participates in international events like the Tour de France, La Vuelta a

España, and Giro d'Italia. The company wants to store the publications
from social networks referring to those events, in order to analyze the brand
impact at a later time.

To ensure people participation, the company produces videos and
pictures from the event, which it shares from the company site, asking
people for comments and so forth.

The marketing team proposes some kind of “consumer community and
ranking,” where buyers can invite others to buy, with discounts that
increase based on the hierarchical recommendations. That means that, if
one buyer recommends another, and this one recommends yet others, the
first one will receive more discounts.

Considering these scenarios:
1. Which repository would be best for cell phone positioning information?

A. Document store
B. Graph store
C. Time series store
D. Columnar data store

2. Which storage would you consider best for the technical brochures?
A. SQL Azure Database
B. Azure Table storage
C. Azure Blob storage
D. Cosmos DB

3. Where should an application retrieving information from social media
store the information for further analysis?
A. Azure Table storage
B. Cosmos DB SQL type
C. Azure Blob storage with hierarchical namespace enabled
D. Azure Queue storage

4. What would be the place to store the media content for sharing?
A. Cosmos DB Document type
B. Azure Table storage

C. Azure Blob storage with AD authorization
D. Azure Blob storage with anonymous access at the container level

5. Where should the company store the “consumer community”
information?
A. Cosmos DB
B. Azure File storage
C. Azure Table storage
D. Azure Blob storage with object data store

Thought experiment answers
This section contains the solution to the thought experiment. Each answer
explains why the answer choice is correct.
1. C. Time series store

Massive information must be stored, but it is directly related with time.
And the data will be just very small pieces of information, such as the
antenna cell phone ID for each entry.

2. D. Cosmos DB
You may consider Blob storage as an option, which is not a bad choice.
But taking into account the spread distribution of the documents around
the world, having a Cosmos DB account already in use is better for
geographical distribution.

3. C. Azure Blob storage with hierarchical namespace enabled
Usually social media information often increases by millions of entries,
and performing complex analysis like sentimental analysis can be
necessary. In addition, different processes may be implemented with the
same data in the future. This means that it will be better to have the data
in Data Lake, which requires hierarchical namespaces to be stored
properly. You can manage and query the subtree of data with fewer
operations than you would with Azure Blob.

4. D. Azure Blob storage with anonymous access at the container level
Blob storage is perfectly capable of managing media data and could be
enabled for anonymous read access; also, it is more cost effective than
other storage types.

5. A. Cosmos DB
The relation between actors is better represented by graph data, and that
kind of information is one of the types that Cosmos DB can store using
the Gremlin API.

Chapter 4

Describe an analytics workload on
Azure

In Chapter 1, “Describe Core Data Concepts,” we approached modern data
warehousing from a conceptual point of view. You learned which workload
types are part of such scenarios and saw an overview of their key traits. We
introduced the concepts behind the term big data, highlighting the
challenges you may have to face. In addition, we explored common
analytics techniques, emphasizing why they are so important for companies
but, at the same time, difficult to implement. Finally, we scratched the
surface of data presentation, providing a quick reference of main charts and
visuals used in reports and dashboards.

This chapter takes a more practical approach, going more in depth into
typical components of a modern data warehouse and Power BI, and
exploring how the Azure platform helps you implement analytics solutions.

Skills covered in this chapter:
Skill 4.1: Describe analytics workloads
Skill 4.2: Describe the components of a modern data warehouse
Skill 4.3: Describe data ingestion and processing on Azure
Skill 4.4: Describe data visualization in Microsoft Power BI

Skill 4.1: Describe analytics workloads

Throughout this book we have covered different types of workloads as well
as their characteristics and the considerations related to them. Since this
skill covers topics that we have discussed previously, we will not be
providing the same full coverage here. Instead, we will present a summary
of the topic of workloads and the role they play in the analytics landscape,
with pointers to the specific sections of the book where you can find wider
coverage. For the same reason, we will not address the topics in the
following bullet list (under “This skill covers how to”) one by one as we do
in other skills. Rather, the summary here, along with the broader knowledge
you acquired in the other sections, will allow you to address each of those
points.

This skill covers how to:
Describe transactional workloads
Describe the difference between a transactional and an analytics
workload
Describe the difference between batch and real time
Describe data warehousing workloads
Determine when a data warehouse solution is needed

In Chapter 1 we introduced the so-called analytics curve, which describes
the level of maturity a company has achieved in implementing analytics
(see Figure 1-13). Although the first step is achievable through traditional
BI systems, like ETL processes and an enterprise data warehouse, the
subsequent steps usually encompass more complex architectures.

In fact, it is common that such architectures contain a mix of four
workloads: relational, non-relational, batch, and streaming. These
architectures are often called modern data warehouses, to distinguish them
from traditional data warehouses.

Relational workload is probably the most common among the four
workloads. Data is organized in tables, with relationships on key fields
between them to represent, for example, all the orders of a specific
customer. Referential integrity is the term that indicates that orphaned
children cannot exist. So, for example, you will never find an order
referencing a missing customer. Data is bound to a schema, which is
enforced on write. That means that malformed data cannot be entered and
that data type must be honored. Also, the majority of relational database
engines implement the ACID principle, ensuring that modifications to the
data, its schema, or service disruption will not cause loss of data.

All these rules, however, come at a cost. Relational databases are not
well suited for high-throughput workloads or massive insert/update batches.
Instead, they best handle small transactions targeting one or few records.

In recent years, the introduction of in-memory technologies has
extended the capabilities of these engines to support analytics-like type of
queries, as, for example, aggregations over large amounts of data. Behind
the scenes, such technologies leverage high compression rates for data and
specific operators that can work on batches of rows at a time, for example,
summarizing them.

In a modern data warehouse, relational databases usually sit at the
edges. They are often sources of data, since they serve as back ends for
applications and websites you want to collect data from. Also, they can be
the sink of your analytics workloads. In this case, it is common to have
databases that are structured as data warehouses (with fact and dimensions
tables), since you may need to store a large amount of data that, at the same
time, has to be served as fast as possible when queried. For this reason, a
product like Azure Synapse Analytics (that leverages in-memory
technologies as columnstore indexes) is one of the preferred choices here.
Azure Synapse Analytics, through the PolyBase engine, can take part in the
transformation phase as well.

Need More Review? Relational workload

Please refer to Chapter 2, “Describe How to Work with
Relational Data on Azure,” for a more in-depth overview of
relational workloads.

Non-relational workload refers to data that does not come in a
structured way. Good examples are images, text files, and data from sensors
and devices.

This type of data may have ancillary information in a more structured
format, like metadata that stores the day an image was taken, the author of a
document, and more.

The real challenge, however, is to extrapolate useful information from
the content itself. As an example, think about a surveillance system in an
airport: being able to detect abnormal behaviors in an automated way is
important, because in this way you can issue a timely warning to the
security personnel. But to do so, you need to have a system that can
understand what is happening in real time or with a minimum delay.

Unstructured (or semi-structured) data is usually stored in repositories
that are optimized for this type of information. In some cases, such data
stores are able to index the content for fast retrieval. For example, data
from IoT devices is often complex JSON objects with nested layers, and it
can be crucial to be able to retrieve a single item filtering an inner attribute.
Without an index that covers such attributes, getting “all the entries with a
recorded speed above 70 mph” can be painfully slow when you have
billions of items to search through.

It is important to know the different types of non-relational data stores
and understand how they work. From Azure Storage to Cosmos DB, it is
likely you have to integrate these components in a modern data warehouse
scenario as sources or sinks.

Need More Review? Non-relational workload

Please refer to Chapter 3, “Describe How to Work with Non-
relational Data on Azure,” for a more in-depth overview of non-
relational workloads.

Batch workload is common in modern data warehouse scenarios and is
usually one of two types: extract-transform-load (ETL) or extract-load-
transform (ELT).

In ETL, data is extracted from sources, transformed, and finally loaded
into the destination sink (or sinks).

In ELT, data is extracted from sources and loaded into the destination
sink. The transformation phase is performed directly at the destination. For
this reason, the sink must have capabilities that enable it to work on data at
scale, like, for example, the massive parallel processing (MPP) architecture
of Azure Synapse Analytics.

One of the main challenges of batch workloads is that they have to
handle large amounts of data. In addition, data may come from various
sources and may have very different structures. All the components
involved in a batch workload should have scaling capabilities. Typically,
scale-out is preferred since scaling up is more likely to incur physical limits
that cannot be overcome.

Engines behind services like Azure Data Factory, Azure Synapse
Analytics, Azure HDInsight, and Azure Databricks have been built with
scale-out in mind, and they are very effective in handling variable amounts
of data. Also, all these services support many different file formats out of
the box and integrate connectors to the most used relational and non-
relational data stores in the industry.

Batch workloads usually run on schedule, typically at night to avoid
affecting operations on source systems. For data stores that are fully
operative the whole day, you may need to implement a recurring off-
loading procedure of the source data to an external storage (for example,
Azure Blob storage), decoupling in that way the batch process from its
source.

Need More Review? Batch workload

Please refer to Chapter 1 for a more in-depth overview of batch
workloads.

Streaming workload is probably the most peculiar type among the four.
Data comes in a continuous flow of events (from a sensor or a social
network, for example), and it is usually analyzed in time windows.
Aggregations are performed over the events that fall within the boundaries
of the currently analyzed window. The result of such aggregations is
displayed on a real-time dashboard for monitoring purposes and/or is saved
in a data store for further analysis. In addition, raw, non-aggregated events
can be off-loaded to a data store. In this way, you have a large amount of
data to feed machine learning (ML) models and perform, for example,
time-series and predictive maintenance analysis, or anomaly detection.

In a modern data warehouse, streaming and batch workloads can coexist
and work in parallel on different “layers.” The speed layer ingests
streaming events, enriching them with static data if needed (for example,
extending the events with information about the device); aggregates them;
and displays/stores the results on a dashboard or in a database. The batch
layer, on the other side, takes all the streaming events (aggregated or not)
ingested during the day and loads them into a data warehouse after
performing some transformations, or trains a machine learning model with
fresh data. This is just a sample architecture, but it conveys the idea of
mixed workloads in modern data warehousing.

Many services can enable streaming workload in your scenario. On
Azure the most used ones are Azure Event Hubs, Azure Stream Analytics,
Azure HDInsight, and Azure Databricks.

Azure Event Hubs can be used to ingest incoming events, making them
available for downstream processing within a configurable retention period.
In addition, its Event Hub Capture feature can off-load all the events to an
Azure Blob storage in Avro format as soon as they arrive.

Azure Stream Analytics connects flawlessly to Azure Event Hubs. You
can author powerful pipelines to perform aggregations over the flowing
events, storing the results in a target data store or displaying them on a
Power BI real-time dashboard.

Azure HDInsight supports both Apache Spark and Apache Kafka among
its cluster types. The former is a multipurpose in-memory engine that has a
specific module for stream ingestion and processing, whereas the latter is
an industry-standard, highly scalable stream ingestion engine.

Azure Databricks has at its core a closed-source, highly optimized
version of Apache Spark. As in Azure HDInsight, you can use Spark
Streaming to ingest and process incoming streams. However, the
collaborative nature of Azure Databricks and its easier manageability can
be a better choice over an Apache Spark cluster in Azure HDInsight if you
want to use this engine in your architecture.

Need More Review? Streaming workload

Please refer to Chapter 1 for a more in-depth overview of
streaming workloads.

Skill 4.2: Describe the components of a
modern data warehouse
Azure represents a natural ecosystem for modern data warehousing
solutions. Its service offering encompasses a broad range of platforms,
engines, architectures, and frameworks, designed to help you respond
effectively to any challenge that might arise.

Moreover, these services are not Microsoft technology-related only;
they enable architects and developers with different backgrounds to work
together, making it possible to always choose the best possible option. At
the same time, you benefit from a deep integration with Azure back-end

infrastructure, monitoring, and security systems, which create a robust
backbone for your architectures.

This skill describes the most common data services in modern data
warehousing.

This skill covers how to:
Describe modern data warehousing architecture and workload
Describe Azure data services for modern data warehousing such
as Azure Data Lake, Azure Synapse Analytics, Azure
Databricks, and Azure HDInsight

Describe modern data warehousing architecture
and workload
Nowadays, companies are eager to collect as much data as possible about
their processes and to extract value from that data. Since we live in a
connected world, the amount of data is constantly growing, thus requiring
the provisioning of specialized technologies that can handle it.

The advent of the cloud has increased accessibility to such technologies,
which could require a costly up-front investment in hardware. Billing
models like pay-per-use enable companies to run proofs of concept (PoCs)
without having to extend their on-premises infrastructure. The PoC
approach lets you try different services, evaluate which one fits best fits
your needs, and get an idea of what your final cost will be.

A modern data warehouse is an architecture that you can use to create a
single source of truth (SSOT) for your entire organization, making
available curated data to business intelligence (BI) developers, data
analysts, business analysts, and users. You may think that this exactly

describes a traditional data warehouse, too, but the difference lies in many
aspects of the process.

Data, for example, can not only come from many different sources, but
in many heterogeneous formats and from different channels as well. This
requires a mixed architecture that is capable of processing both static and
streaming data.

The volume of data may be in the order of petabytes. For this reason, the
components of a modern data warehouse have to be able to scale out upon
request, scaling back in when compute power is not needed anymore (to
save on costs).

It is often necessary to extrapolate useful information from unstructured
data. In many cases, pipelines in modern data warehousing are AI-enabled
and leverage machine learning models to interpret the processed content in
a machine-readable way.

These are just some traits of the typical workload a modern data
warehouse is able to handle. This workload is referred to as an analytics
workload.

Need More Review? Modern data warehouse and analytics
workload

Please refer to Skill 4.1, “Describe analytics workloads,” for an
overview of the different types of workloads commonly found in
this type of architecture.

In addition, a modern data warehouse must be secure. Azure includes a
strong integration between its security infrastructure and its services. Every
component usually has the ability to refer users and groups from Azure
Active Directory, basing its role-based access control (RBAC) mechanism
on them.

This centralized management is very important, especially in complex
organizations. Users can ask to access curated data to analyze it, but they
must access only information pertaining to their security group(s).

The next section describes some key components of a modern data
warehouse architecture.

Describe Azure data services for modern data
warehousing such as Azure Data Lake, Azure
Synapse Analytics, Azure Databricks, and Azure
HDInsight
This section focuses on three Azure services that have great versatility and,
for this reason, are often part of modern data warehouse solutions:

Azure HDInsight
Azure Databricks
Azure Synapse Analytics (formerly Azure SQL Data Warehouse)

These services can be used almost in every part of a typical ETL/ELT
workflow, but this book explores their uses in the data processing (and
serving, for Azure Synapse Analytics) phase, to show the different
approaches you have to follow to leverage them.

 Exam Tip

Of course, other services are often part of a modern data warehouse
ecosystem: Azure Storage, Azure Data Factory, and Power BI, to name
a few.

Azure Storage is briefly introduced in Chapter 3; it is also used
throughout this chapter.

Azure Data Factory is described in detail in Skill 4.3.

Power BI is described in detail in Skill 4.4.

Need More Review? Modern data warehouse architecture

You will find a good starting point and an architectural overview
of modern data warehousing here: https://docs.microsoft.com/en-
us/azure/architecture/solution-ideas/articles/modern-data-
warehouse.

Practices are presented after each service description. Skill 4.3 uses the
resources provisioned in these practices to show data processing options.

Azure HDInsight
Azure HDInsight is a managed cloud distribution of Hadoop components.

Need More Review? Apache Hadoop

Hadoop is an open source framework that allows for the
distributed processing of large data sets across clusters of
computers, and it is part of the Apache Software Foundation.
Learn more here: https://hadoop.apache.org.

HDInsight enables scenarios like ETL, data warehousing, machine
learning, and Internet of Things (IoT) through popular open source
frameworks such as Hadoop, Spark, Hive, LLAP (Live Long and Process),
Kafka, Storm, and R.

https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/modern-data-warehouse
https://hadoop.apache.org/

Hadoop is built with scalability in mind; when a job is issued to a
cluster, it is divided into smaller units of work by the head node; then, the
worker nodes execute these pieces. This computational model is called
MapReduce; different frameworks based on Hadoop could have their own
implementation of tasks distribution that extends and/or hides MapReduce
(Spark, for example). Also, the cluster is fault-tolerant; if a worker node
fails for whatever reason, the part of the job assigned to it is reassigned to
another available node. Even though this could increase the total execution
time for the job, especially when all other nodes are already busy and the
task is queued in one of them, it is a reasonable price to pay to avoid a job
disruption, which would mean restarting it from the beginning.

When a worker node receives its part of the job to execute, it also gets
instructions as to where the data it needs resides, so it is autonomous in
both gathering and processing data. As soon as the worker completes the
task assigned to it, it sends the result of the computation to the head node;
after collecting all the results from the workers, the head node composes
the final data set and sends it to the client that issued the job. All the nodes
are Linux VMs hosted on Azure, and you are billed for their compute time
and infrastructure, like a regular Azure VM.

It is important to note that it is actually not the data that is distributed
when the job starts, but rather the stages that are needed to achieve the
result. In other words, the “execution plan” of the job—or, at least, the part
of it relevant to each one of the worker nodes— is distributed. Data is
usually stored on a Hadoop Distributed File System (HDFS), which is
composed of the data nodes and which contains the physical blocks of data.
HDFS is also similar to the technology Azure Storage is based on.

Need More Review? HDFS

If you want to know more about the underlying architecture of
HDFS, visit this site:
https://hadoop.apache.org/docs/current/hadoop-project-
dist/hadoop-hdfs/HdfsDesign.html.

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

HDInsight comes with several different types of clusters. At the time of
provisioning, you have to choose which cluster you want to create, and you
cannot change it later. Clusters allow for a great degree of customization,
such as the addition of new components and applications. Following are all
the available types of clusters:

Apache Hadoop This framework uses HDFS as its storage and
MapReduce as its programming model. Resource management is
handled by YARN, a service that acts as both a resource manager and
a job scheduler/monitor and is a core component of most Hadoop
environments.
Apache Spark This is an open source, parallel-processing framework
that supports in-memory processing. As you will see in the next
section, HDInsight is not the only way to leverage Spark in Azure.
Apache HBase This is a high-performance NoSQL database built on
Hadoop.
ML Services This is a server for hosting and managing parallel,
distributed R processes. R is a very common language among data
scientists, and a strong community supports it. It shines when handling
data cleansing, discovery, and preparation phases, but it can
practically cover every need in a machine learning (ML) development
lifecycle by relying on large repositories of packages.
Apache Storm This is a distributed, real-time computation system for
processing large streams of data fast.
Apache Interactive Query This is an in-memory caching for
interactive and faster Hive queries.
Apache Kafka This is one of the most used platforms for building
streaming data pipelines. Also, it allows you to publish and subscribe
to data streams, making it a good candidate for the ingestion phase of
streaming workloads.

Need More Review? Cluster types

If you want to know more about available cluster types in
HDInsight, visit this site: https://docs.microsoft.com/en-
us/azure/hdinsight/hdinsight-overview#cluster-types-in-hdinsight.

Since the first release of Hadoop (in 2016), the open source ecosystem
around it kept growing regularly year after year. When you provision an
HDInsight cluster, it already comes with many popular frameworks and
tools installed on it: Ambari, Avro, Hive, Sqoop, Tez, Pig, ZooKeeper, and
many more. This dramatically reduces the setup time of your environment,
since you can be ready to go just after the creation of a cluster.

Need More Review? Installed version of components

Depending on the installed release of HDInsight (the latest is 4.0
as of this writing), it comes prepackaged with specific versions of
the various components. The following site provides up-to-date
information: https://docs.microsoft.com/en-
us/azure/hdinsight/hdinsight-component-versioning#apache-
components-available-with-different-hdinsight-versions.

From a manageability point of view, you must take these two aspects
into consideration:

1. Once provisioned, clusters cannot be paused; this means that if you
want to save on consumption (and hence, costs) when they are not
in use, the only possible way is to delete the cluster. In fact, many
organizations use automation (Microsoft PowerShell, Azure CLI,
and so on) to provision the cluster just when it is needed and to drop
it right after the job completes. A drawback of this approach is that
you have to keep the provision script up to date with any changes to
the configuration of the cluster you have made. Another option is to

https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-overview#cluster-types-in-hdinsight
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-component-versioning#apache-components-available-with-different-hdinsight-versions

leverage Azure Data Factory to submit a Hive job to an on-demand
HDInsight cluster (more on that in the next skill).

2. Although older versions of HDInsight lacked auto-scaling
capabilities, in November 2019 this feature was released for Spark
and Hadoop cluster types, and you have two options:

A. Load-based scaling You can define which threshold of specific
cluster metrics would trigger the scaling event. This follows a
reactive pattern, and you have to account for the time needed
to reach the target size of the cluster, since the job could finish
before the additional nodes are provisioned.

B. Schedule-based scaling You can define when, and for how
long, the cluster should scale. This is helpful when your
workload has a predictable pattern, such as a load spike in
fixed time windows.

Need More Review? Auto-scaling

You can find more information about how to configure auto-
scaling here: https://docs.microsoft.com/en-
us/azure/hdinsight/hdinsight-autoscale-clusters.

 Exam Tip

Because HDInsight is based on Hadoop, HDInsight is tied to the Linux
world. For this reason, first releases were less integrated with Azure
security infrastructure and, in particular, with Azure Active Directory
Domain Services (Azure AD DS). Luckily, things are now more
mature, and it has become easier to connect your existing active
directory with your cluster thanks to the Enterprise Security Package
(ESP). Moreover, ESP adds multiuser support to the cluster, which by
default is single-user, enabling more complex enterprise scenarios. For

https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-autoscale-clusters

a comprehensive overview of enterprise security in HDInsight and an
introduction to ESP, visit https://docs.microsoft.com/en-
us/azure/hdinsight/domain-joined/hdinsight-security-overview.

To create an HDInsight cluster from the portal, you can search for
“Azure HDInsight” in the search box at the top of the Azure portal page.

 Exam Tip

The Azure portal is not the only way you can create an HDInsight
cluster. Read more here: https://docs.microsoft.com/en-
us/azure/hdinsight/hdinsight-hadoop-provision-linux-clusters#cluster-
setup-methods.

1. On the Azure HDInsight page, shown in Figure 4-1, click Create.

https://docs.microsoft.com/en-us/azure/hdinsight/domain-joined/hdinsight-security-overview
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop-provision-linux-clusters#cluster-setup-methods

Figure 4-1 The HDInsight creation page

2. On the Create HDInsight page, you will see six tabs:
A. Basics Here you have to choose the subscription and the

resource group that will contain your cluster. If the resource
group does not exist yet, you can create it from here. Then you
have to fill in specific properties of your cluster: name, region,
type (one of the seven types described earlier) and release
version, administrator username and password, and Secure
Shell (SSH) username and password.

B. Storage Here you specify the primary storage account for
your cluster, choosing among Azure Storage, Data Lake
Storage Gen1, Data Lake Storage Gen2, the container or file
system name, and security information to access the resource.

HDInsight uses it to store logs, job input, and job output.
Moreover, you can link additional storage solutions to make
them accessible by jobs or users working on the cluster, and
you can select where to store Hive and Oozie metadata and
Ambari DB, if in the proprietary Azure SQL Database or in a
custom one.

 Exam Tip

HDInsight comes with a hidden Azure SQL Database that
hosts metadata for the cluster. It is free of charge, but it has
a very basic tier and is not suitable for production
workloads. You may want to use an external database to
store metadata for two reasons: (1) availability, to avoid
losing them between re-creating clusters, and (2)
performance, to increase the responsiveness of the
Metastore database. Read more here:
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-
use-external-metadata-stores.

C. Security + Networking Here you can edit security-related
settings, such as enabling and configuring ESP and/or
encryption at rest, selecting the minimum TLS version
supported, and joining your cluster to a virtual network.

D. Configuration + Pricing On this tab you can select the size of
the head nodes and the size and number of the worker nodes.
There are always two head nodes, whereas the number of
worker nodes can reach the quota of vCores your subscription
allows. Depending on your cluster type, you may want to
choose a series of virtual machines more suitable for disk-
based or in-memory workloads. Here you can also choose
additional third-party applications to be installed on the cluster
and specify a custom PowerShell or Bash action script to be

https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-use-external-metadata-stores

executed on cluster nodes during provisioning—for example,
to configure additional properties not available in the creation
process. Last, but not least, you can enable auto-scaling, either
load based or schedule based. Load-based auto-scaling
requires you to specify the minimum and maximum number of
worker nodes to scale between, whereas schedule-based auto-
scaling requires you to set up a calendar schedule.

E. Tags Here you can specify any tag for your cluster. Tags are
name/value pairs assigned to a particular resource, mostly for
billing consolidation.

F. Review + Create Here you have the entire configuration
description, and the Create button to confirm the resource
creation.

3. The portal generates the template, sends it to be deployed, and
displays a page with the message Your deployment is in progress,
informing you that it is currently in the creation phase.

After the provisioning is complete, you can navigate to the Overview
page of the resource in the Azure portal. In the central pane, beside
common properties like resource group, subscription, cluster status, type,
and URL, you can see the Cluster Dashboards box with two links in it, as
shown in Figure 4-2.

Figure 4-2 The Overview page of an HDInsight resource

1. Ambari Home This link is the entry point for the Ambari
management web portal (see Figure 4-3), a comprehensive
collection of dashboards that covers almost every aspect of your
cluster. Here you can see cluster-level metrics, logs, configuration
settings, and more. In addition, subsections of the application detail
all the running services with dedicated information and metrics.

2. Ambari Views This link leads to the very same Ambari web portal,
but in a section where you can find preconfigured thematic
dashboards called views (see Figure 4-4). Usually, these dashboards
give quick information on a specific service, and they are installed
by the services themselves.

Figure 4-3 Ambari web portal

Figure 4-4 Ambari views

The left-hand menu of the resource page in the portal contains
commands for accessing Azure resources, such as Activity Log and Access
Control. In addition, you can tune and manage your cluster—resizing it;
adding, removing, or changing linked storage accounts; installing
applications; setting Metastore locations; and more.

You can use the option on the Tools menu to download software
development kits (SDKs) and plug-ins for some of the most popular
integrated development environment (IDEs):

Visual Studio
IntelliJ
Eclipse
Visual Studio Code

Other options include:
Azure CLI
Azure PowerShell
HDInsight .NET SDK

The development cycle depends on the type of cluster provisioned. For
example, a Spark cluster requires you to create a Scala Spark application
and submit it to the cluster or, as an alternative, submit a script in one of the
supported dialects like PySpark. If you opt for a Hadoop cluster instead,
you can submit Hive jobs or Hive queries to the cluster.

Need More Review? Programming languages in HDInsight

To discover all the supported languages and know more about the
development tool for HDInsight, visit this site:
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-
overview#programming-languages-in-hdinsight.

Practice Provision an HDInsight Hadoop cluster
This practice guides you through the creation process of a Hadoop cluster.
Skill 4.3 uses this cluster to show a simple data engineering workload.

1. After logging in to the Azure portal, click Create A Resource.

https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-overview#programming-languages-in-hdinsight

2. Type Azure HDInsight in the search bar and select it in the search
results.

3. Click Create.
4. On the Basic tab:

A. Select your subscription and resource group.
B. Select the same region you used in the previous practices

(such as North Europe).
C. Enter a globally unique name for your cluster.
D. Select Hadoop as the cluster type, and Hadoop 3.1.0 (HDI 4.0)

as the version.
E. Leave Admin as the Cluster login username, then enter and

confirm a password.
F. Leave sshuser as the Secure Shell (SSH) username, and make

sure that Use Cluster Login Password For SSH is selected.
5. On the Storage tab:

A. Select Azure Storage as the primary storage type. Then, from
the Primary Storage Account drop-down, select the one you
created in the “Creating a storage account and container using
PowerShell” practice in Chapter 3 (or, if you prefer, create a
new one).

B. Enter either a new or an existing container name and leave the
other fields as they are.

6. Skip the Security + Networking tab, keeping the default values.
7. On the Configuration + Pricing tab:

A. Select D3 v2 as the size for both the Head and Worker nodes.
B. Set the number of worker nodes to 2.
C. Leave the Enable Autoscale option unselected.

8. Click Review + Create.
9. If your HDInsight cluster passes validation, click Create.

10. Wait for the provisioning to complete, then navigate to the resource
and familiarize yourself with the various options.

Azure Databricks

One of the biggest limitations of the MapReduce distributed computing
paradigm is that input, output, and intermediate results are stored on disk.
Because this behavior could quickly become a bottleneck as the amount of
data you want to process grows, in 2011 a group of students from Berkeley
developed an open source project called Spark, which primarily works in
memory. This approach has been well received, and the adoption of Spark
has increased quickly.

In 2013, the creators of Spark founded Databricks, a company that aims
to take the engine to the enterprise level, concentrating the whole Spark
ecosystem on one single platform-as-a-service (PAAS) offering.

Databricks defines itself as a unified analytics platform, since it enables
data engineers, data scientists, ML engineers, and data analysts to
seamlessly work together in the same workspace.

Need More Review? Databricks

To know more about the Databricks platform, check out this site:
https://databricks.com.

The Microsoft Azure team and Databricks have worked hard to create
the best possible integration between the two platforms, and the result is
Azure Databricks. Azure users can quickly provision an Azure Databricks
service and benefit from the integrated enterprise-level security and the
optimized connectors to the most popular Azure components, such as
Azure Blob storage, Azure Data Lake storage, Cosmos DB, Azure Synapse
Analytics, Azure Event Hub, and Power BI. Here are the main
characteristics of Azure Databricks:

Notebooks Code can be authored through notebooks, which may be
familiar to you if you have ever come across Jupyter notebooks or the
IPython interface. Notebooks are web-based interfaces organized in
cells that allow for mixing code, rich text (in Markdown language, the
same language used by the Microsoft Docs platform), and small

https://databricks.com/

dashboards in the same document. Moreover, they allow for multiuser
interactive programming, support versioning, and can be
operationalized with job-based executions.
Cluster manager You can easily create, manage, and monitor clusters
through this handy UI. Multiple runtime versions are supported, so
you can create a new cluster with the latest (or beta) runtime released
without affecting the existing workload. In addition, the serverless
option lets you focus just on managing costs, with the platform
supplying the provision and scaling of the resources needed to run the
requested workload.
Optimized runtime Although Spark is also available in Azure
HDInsight as one of the cluster types, Databricks is based on a closed
source, heavily optimized version of the open source runtime.
Nonetheless, Databricks is still one of the most proficient contributors
to the open source version of Spark, and many new features and
improvements are developed internally and then released to the public.
Spark is the only type of cluster available in Databricks.
Enterprise-level security Azure Databricks is deeply integrated with
Azure Active Directory, allowing for a clear separation of users and
groups management (which can be demanded entirely from the IT
department) and internal platform roles and authorization. You have
fine-grained control over what a user can do when working inside the
environment. For example, you can restrict cluster access to specific
Azure AD groups, or you can enable users to monitor notebook and
job executions but prevent them from actually running any workload.
Please note that the role-based access security is a Premium-only
feature.
Delta Lake First developed internally by Databricks and then released
to the public, Delta Lake is an open source storage layer that runs on
top of a data lake. It provides ACID transaction support and scalable
metadata handling, and it has the ability to treat a batch table as a
streaming source and sink, unifying batch and streaming workloads.
MLOps Azure Databricks has full support for the whole ML
lifecycle; you can develop, test, train, score, and monitor your model
by leveraging the ML Runtime (a runtime dedicated to ML that you

can choose for your cluster), the Spark MLlib library, MLFlow
integration, and the Model Registry.
Rest API You can interact with your workspace through a broad set of
APIs, which makes it easy to integrate with existing applications and
workflow.

Need More Review? Azure Databricks

To explore all the features offered by Azure Databricks and to
learn more about the service, visit this site:
https://docs.microsoft.com/en-
us/azure/databricks/scenarios/what-is-azure-databricks.

Need More Review? Delta Lake

Delta Lake is growing rapidly in popularity. In fact, in modern
data warehousing data lakes are very common, and the whole
process benefits from making them more robust and reliable.
Read more here: https://docs.microsoft.com/en-
us/azure/databricks/delta/delta-intro.

As we mentioned, Azure Databricks is based on Spark. The architectural
foundation of Spark relies on Resilient Distributed Datasets (RDDs):

Resilient An RDD is immutable by nature, which means that its
underlying structure makes it possible to reconstruct it in case of
failure of one of the nodes of the cluster.
Distributed An RDD is a collection of objects partitioned across the
nodes of the cluster, which makes it possible to parallelize and scale
most of the work.

https://docs.microsoft.com/en-us/azure/databricks/scenarios/what-is-azure-databricks
https://docs.microsoft.com/en-us/azure/databricks/delta/delta-intro

Datasets An RDD maps data, which is stored on a file system, usually
a distributed one like HDFS, or a database. You can consider them as
a tabular representation of the underlying data, but with cells that can
contain complex objects as their values (think about JSON nested
elements, for example). They do not contain data—they are just a
pointer to it.

 Exam Tip

The RDD layer has been abstracted in later versions of Spark with the
introduction of the DataFrame API in 2013 and the Dataset API in
2015. From Spark 2.x on, use of these APIs is encouraged, since they
allow for a more robust and cleaner code.

The Spark ecosystem is very wide (see Figure 4-5), and all its
components are included in Azure Databricks. They are as follows:

Figure 4-5 The Apache Spark ecosystem

Spark Core API Spark is built atop Scala, but it supports five
different programming languages: R, SQL, Python, Scala, and Java.
You can consider the first three as dialects of Spark; in fact, we talk of
SparkR, SparkSQL, and PySpark. In notebooks, you can use and mix
all these languages, with the exception of Java. To use Java, you have
to create a JAR library in your preferred IDE and import it to your
workspace so that you can reference the defined classes in notebooks.
Spark SQL and DataFrames Spark SQL is the module for working
with structured data. Your data is usually read, manipulated, and
written through objects called DataFrames, which as we explained
earlier are an abstraction layer over RDDs. Although data sets provide
a type-safe approach to the underlying data, DataFrames are often
preferred for their higher versatility in handling dirty values, missing
or unattended columns, and more.
Streaming Spark provides stream processing capabilities and
integrates well with stream ingestion engines like Azure EventHub
and Kafka.
MLlib Spark comes with a machine learning library with common
algorithms and utilities built in, both for model development and its
deployment to production.
GraphX This module provides support for graphs and graph
computation.

Provisioning a Databricks workspace requires a few simple steps. To
create it from the portal, you can search for Azure Databricks in the search
box at the top of the Azure portal page.

1. On the Azure Databricks page, shown in Figure 4-6, click the
Create button.

Figure 4-6 The Azure Databricks creation page

2. On the Create Azure Databricks page, you see four tabs:
A. Basics Here you choose the subscription and resource group

that will contain your instance. If the resource group does not
yet exist, you can create it from here. Then you have to fill in
specific properties of your instance: its Azure region and the
name of the workspace, which must be globally unique. In
addition, you have to specify the pricing tier, choosing among
Standard, Premium, and Trial; more on that later in this
section.

B. Networking On this tab you choose to deploy all Azure
Databricks resources in an Azure-managed Virtual Network
(VNET), which is the default, or to specify a private VNET
where you want the resources to be provisioned to. The first
option creates a locked resource group that contains all the

needed components and services—the managed VNET, a
storage account, the nodes of the cluster, and more.

C. Tags Here you can specify any tag for your instance. Tags are
name/value pairs assigned to a particular resource, mostly for
billing consolidation.

D. Review + Create Here you have the entire configuration
description, and the Create button that you click to confirm the
resource creation.

3. The portal generates the template, sends it to be deployed, and
displays a page with a Your deployment is in progress message,
informing you that it is currently in the creation phase.

Need More Review? Deploy Azure Databricks in your
Azure virtual network

If you want to know more about provisioning of Azure
Databricks in a private VNET, visit this page:
https://docs.microsoft.com/en-
us/azure/databricks/administration-guide/cloud-
configurations/azure/vnet-inject.

After your provisioning is complete, you can start navigating your
workspace. To do so, from the Overview page of your resource, click
Launch Workspace, as shown in Figure 4-7.

https://docs.microsoft.com/en-us/azure/databricks/administration-guide/cloud-configurations/azure/vnet-inject

Figure 4-7 Azure Data Factory Overview page

A new browser page opens, pointing to a URL such as https://adb-
<uniqueid>.<#>.azuredatabricks.net/o=<uniqueid>. After signing in (you
do not have to reenter your credentials, since Single Sign-on carries them
over for you), you can access the multitenant web application that lets you
interact with your instance. This is called the control plane and it is hosted
on the global Azure infrastructure. Communication and interaction with the
resource of your workspace is provided through VNET peering, a secure
channel between two virtual networks. For Azure Databricks, this secure
channel is usually created between the VNET where you deployed your

workspace and the VNET that hosts the control plane web application. The
home page of that application, shown in Figure 4-8, presents a toolbar on
the left, with nine buttons:

Figure 4-8 The Azure Databricks control plane

Azure Databricks Clicking this button leads to the landing page.

Home Clicking this button opens a tab that contains a tree view of the
files and folders stored in your workspace (usually notebooks),
pointing you to the defined home directory. This tab is named
Workspace (see Figure 4-9), and the home directory is by default a
subfolder with the same name as the logged-in user, typically the
Azure username, and it is visible only by administrators and the owner
themselves. Also, administrators can restrict access to folders outside
the home directory to just specific users and groups.

Figure 4-9 The Workspace tab

Workspace This button is a toggle for the Workspace tab. The tab can
also be pinned to keep it open.
Recents Clicking this button reveals a list of last-accessed items, such
as notebooks you edited or ran.

Data Here you can create, manage, and delete databases and tables.
Databases are a collection of table objects, and tables are collections
of structured data. You interact with them through the Spark API,
specifically with DataFrames. These objects are accessible only when
there is at least a cluster running. Tables can be either global or local.
Global tables are accessible from all clusters and are registered in the
Hive Metastore, whereas local tables are visible only from the cluster
where they have been created. Local tables are also called temporary
views.
Clusters Clicking this button opens the Cluster Management tab. Here
you can create, manage, monitor, and delete your clusters. Typical
management tasks include changing the number and the size of nodes,
tuning auto-scaling, setting a grace period before the nodes
automatically shut down when not used, and so on.Figure 4-10 shows
the cluster creation screen. Here you define the following:

A. Cluster Name A friendly name, it must be unique within the
workspace.

B. Cluster Mode Specify Standard, Single-User Oriented, or High
Concurrency; the latter is more suitable for parallel workloads.

C. Pool Specify whether the cluster should be added to a serverless
pool or a standalone one. If you add it to an existing pool, the
Databricks runtime handles it for you, using it or not, depending
on the workload and the pool configuration.

D. Databricks Runtime Version This is the runtime your cluster will
run. It is a combination of Scala and Spark versions, support for
GPU acceleration (very suitable for AI algorithms, in particular
neural networks and deep learning), and optimization for ML
development. You can choose between current, older, and beta
releases.

E. Autopilot options Here you define whether auto-scaling and auto-
shutdown are enabled. For the latter, you can specify the
inactivity timeout period (in minutes) before a node should be
shut down.

F. Worker and Driver types Here you define the size of the nodes of
your cluster. You can choose from a selection of Azure VM

series. In addition, you can specify the number of worker nodes
(if auto-scaling is not selected) or a minimum/maximum range of
worker nodes the runtime will throttle between (if auto-scaling is
enabled).

G. Advanced options Here you can fine-tune your cluster. You can
set Spark properties to override default configuration, add
environment variables, define a custom path for log files, and
specify the path to init scripts the cluster has to run on every node
when provisioning them (for example, to install custom libraries).
In addition, you can select the Azure Data Lake Storage
Credential Passthrough option, which automatically passes the
AAD credentials of a specific user (if on Standard cluster mode)
or of the current user (if on High Concurrency cluster mode)
when reading from or writing data to a Data Lake Storage; both
Gen1 and Gen2 are supported.

Figure 4-10 The cluster creation screen

Jobs Here you can create and schedule jobs. A job consists of a single
task, which could be either a notebook to execute, a JAR library, or a
spark-submit command.
Models Clicking this button opens the Machine Learning Model
Registry, where you can manage and track the lifecycle of your
models.

Search Here you can search your workspace for a specific notebook
or term.

Need More Review? Azure Active Directory credential
passthrough

To learn more about this topic, visit this site:
https://docs.microsoft.com/en-
us/azure/databricks/security/credential-passthrough/adls-
passthrough.

Access to the storage layer is granted through the Databricks File
System (DBFS), which is a distributed file system mounted into a
workspace and available on all the clusters. Specifically, it is an abstraction
layer, and it has the following perks:

It allows for mounting external storage (like Azure Blob storage,
Azure Data Lake storage, and more), so it can be accessed without
entering credentials every time.
You can interact with object storage with typical file semantics, and
not URLs.
You can persist files to object storage to avoid losing data after a
cluster has been terminated.

Any workspace comes with local storage (an Azure Blob storage
account deployed on the managed resource groups) that can be accessed
through the default storage location, the DBFS root. Figure 4-11 shows the
contents of that folder, obtained by issuing a command to a running cluster
in a notebook cell. The Databricks-datasets folder contains many data sets
that can be used for testing and demo purposes. The size property is
returned for files only and is always 0 for folders.

https://docs.microsoft.com/en-us/azure/databricks/security/credential-passthrough/adls-passthrough

Figure 4-11 The contents of the DBFS root folder

The /mnt folder can be used to access any external storage that has been
mounted on the cluster. To mount an external storage, you can use the
dbutils.fs.mount command in a notebook cell, passing authorization
information in the extra_config parameter.

 Exam Tip

Since mounts are visible to every user who has access to the cluster,
you may want to use WASB or ABFS drivers to reach your files stored
on an Azure storage account instead.

For example, after you proper set up authentication, you can list the
contents of a folder on Azure Data Lake storage Gen2 with a syntax
like this: dbutils.fs.ls("abfss://<file-system-name>@<storage-account-
name>.dfs.core.windows.net/<directory-name>");

In the same way, you can access a folder on Azure Blob storage with a
syntax like this: dbutils.fs.ls("wasbs://<container-name>@<storage-
account-name>.blob.core.windows.net/<directory-name>");

Learn more about all the available approaches here:
https://docs.microsoft.com/en-us/azure/databricks/data/data-
sources/azure/azure-datalake-gen2 https://docs.microsoft.com/en-
us/azure/databricks/data/data-sources/azure/azure-storage

For example, to mount the Azure Blob storage container named
companyblobs from the account dp900sablob, you can use either an access
key (as shown in Figure 4-12) or a SAS token. Mounts are accessible by
any user connected to the cluster.

https://docs.microsoft.com/en-us/azure/databricks/data/data-sources/azure/azure-datalake-gen2
https://docs.microsoft.com/en-us/azure/databricks/data/data-sources/azure/azure-storage

Figure 4-12 How to mount an Azure Blob storage container

Need More Review? Azure Databricks File System

To learn more about the Azure Databricks File System and
explore all the options available for mounts, visit this site:
https://docs.microsoft.com/en-
us/azure/databricks/data/databricks-file-system.

Azure Databricks billing is based on Databricks Units (DBUs), metrics
used to track how many seconds the runtime works. In addition, you have
to consider the infrastructure cost for the nodes of your clusters (which are

https://docs.microsoft.com/en-us/azure/databricks/data/databricks-file-system

normal Azure VMs), for the public IP address, and for the internal Blob
storage account. Two factors affect DBU cost:

Tier (or SKU) DBUs cost more on the Premium tier than on the
Standard tier. The Free tier gives you zero-cost DBU for a period of
14 days, and then you have to choose between Standard and Premium.
Type of workload This depends on what type of work you do on your
clusters—Data Engineering, Data Engineering Light, and Data
Analytics. These names can be misleading, since they do not refer to
the Spark library you use or the type of commands you issue, but they
generally differentiate infrastructure-type workloads (for example, the
actual work the internal scheduler has to do in order to run a job) from
data workload (actually, any Spark command belongs to this category,
be it an ML model training or a DataFrames transformation).

Discounts on DBU prices are available if you opt for pre-purchase
plans.

Need More Review? Databricks pricing and tiers

To learn more about the differences between all the available
SKUs, and to better understand DBU pricing, check this site:
https://azure.microsoft.com/en-us/pricing/details/databricks/.

Practice Provision an Azure Databricks workspace, create a cluster, and
mount external storage

This practice guides you through the creation process of an Azure
Databricks workspace, the setup of a cluster inside it, and the mounting of
external storage to that cluster. Skill 4.3 uses these resources to show a
simple data engineering workload. Please note that you need a pay-as-you-
go subscription to complete this practice, since the quota limits for free trial
plan subscriptions prevent you from creating even a bare-minimum cluster.
You are limited to four vCores, and the minimum number of cores for
worker and driver nodes you can select when creating the cluster is four.

https://azure.microsoft.com/en-us/pricing/details/databricks/

This means that the simplest cluster you can create, consisting of the driver
node and a single worker node, would need to allocate eight cores. In
addition, the option to increase the quota limits by issuing a ticket to Azure
Support is not available in free trial subscriptions. This limit is not a
problem for the Azure HDInsight cluster you created in the previous
practice, since HDInsight has dedicated quota values that, as of this writing,
allow for up to 40 allocated vCores in free trial subscriptions.

1. After logging in to the Azure portal, click Create A Resource.
2. Type Azure Databricks in the search bar and then select it in the

search results.
3. Click Create.
4. On the Basic tab:

A. Select your subscription and resource group.
B. Select the same region you used in the previous practices

(North Europe).
C. Enter a globally unique name for your workspace.
D. Select Trial as the pricing tier.

5. Skip the Networking tab; the default values are fine.
6. Click Review + Create.
7. If your Azure Databricks workspace passes validation, click

Create.
8. Wait for the provisioning to complete, and then navigate to the

resource and click Launch Workspace on the Overview page.
9. In the Control Plan web application, click Clusters in the left-hand

toolbar.
10. Click Create Cluster.
11. On the Create Cluster page:

A. Enter a friendly name for the cluster.
B. For Cluster Mode, select Standard.
C. For Pool, select None.
D. Choose the latest stable (not Beta) runtime, avoiding runtimes

containing the ML suffix. For example, choose a runtime like
7.2 (Scala 2.12, Spark 3.0.0).

E. Select the Enable Autoscaling option.

F. If you like, set a different timeout value for cluster
termination; the default is two hours.

G. Select Standard_DS3_v2 as the worker type, set Min
Workers to 1, and set Max Workers to 2.

H. For Driver Type, select Same As Worker.
I. Click Create Cluster and wait a few minutes for the cluster

creation. When the process completes. you are redirected to
the cluster edit page, and a green circle next to the name of the
cluster at the top of the page indicates that it is running.

12. Click Home. The Workspace panel appears.
13. In the Workspace panel:

A. Click the down arrow next to the folder with your username
and a small icon of a house next to it.

B. From the menu that opens, select Import.
C. Click the browse link, search for the DP900.dbc file in the

companion content, and select it. You can use Azure
Databricks to export single notebooks or an entire folder
structure in various formats, and DBC is one of them (it is an
archive file in a proprietary format). This specific file contains
a Databricks folder with some notebooks you will use in this
and other practices.

D. Click Import.
E. Click the dp900 folder that has been imported.
F. Select the 00 - DBFS notebook.

14. In the 00 - DBFS notebook:
A. Fill the following missing variables in the Cmd 2 cell:

<container-name>, <account-name>, and <access-key>. For
the first two variables, you can use the same account and
container name you used for the “Creating a storage account
and container using PowerShell” practice in Chapter 3. For the
last variable, you can find the access key of the storage
account in the Access Keys section of the same resource page
on the Azure portal (you can choose either the primary or the
secondary key).

B. Hover your mouse over the Cmd 2 cell and click the run icon
in the top-right menu that appears. From the drop-down menu,
choose Run Cell and wait for the mount operation to
complete. As an alternative, you can run the currently
highlighted cell by using the Ctrl+Enter keyboard shortcut.

C. When the mount operation completes, hover the mouse over
the Cmd 4 cell and click the run icon in the top-right menu
that appears. From the drop-down menu, choose Run Cell and
wait for the execution to complete. Just below the box
containing the code, you can see a grid view listing the content
of the container you just mounted.

Azure Synapse Analytics
Formerly known as Azure SQL Data Warehouse, Azure Synapse Analytics
is common in modern data warehouse architectures. Relational schemas
and, more specifically, star schemas are still robust and natural ways to
store and represent data for analytics purposes. Moreover, well-established
practices like data distribution, horizontal partitioning, and compression do
a good job in terms of performance even when pulling data out of fact
tables containing historical data—tables that can quickly become huge.

Need More Review? Azure Synapse Analytics

Since Chapter 2 already introduced Azure Synapse Analytics,
this skill does not repeat the same information.

To learn more about its architecture and core concepts, you can
refer to Skill 2.2: Describe relational Azure data services.

Nowadays, the principal role of Azure Synapse Analytics is usually to
serve as the single-source-of-truth across the organization or, in other
words, as the enterprise data warehouse. This means it is at the end of the
ETL/ELT process, storing curated data that, cleansed and properly

transformed in the processing phase, is ready to be explored by end users,
business users, and data analysts through reports, dashboards, or direct
queries to the engine. Also, additional processes that belong to the serving
layer can pull data out of it to prepare data sets that represent just a segment
of the whole data (sales for the current year, customers, orders, and so on).
Such data sets can then be used by power users to create satellite business
intelligence models with tools like Power BI, enabling scenarios that fall
under the name of self-service BI.

Azure Synapse Analytics has many traits that make it a first choice for
such a fundamental role in a modern data warehouse architecture. The most
important ones probably are as follows:

Capacity As long as a table uses columnstore compression, it has no
limits on the amount of data it can store. This is important for fact
tables, which can accumulate billions of rows without you having to
worry about running out of space.
Performance The engine is crafted specifically for analytics
workloads, enabling users to run large aggregations over the data with
very reasonable response times. It includes heavy optimization for the
so-called star joins, which are a way to relate facts, stored in fact
tables, and the description of such facts, stored in dimension tables. In
addition, features like workload management, materialized views, and
result set caching (to name a few) ensure that resources are not wasted
and so are available when really needed. However, it is important to
keep in mind that database design has now, even more than before, a
key role in avoiding performance bottlenecks. For example, choosing
the wrong distribution key for a fact table could easily lead to
unacceptable (or infinite) response times, which cannot be resolved
without rethinking the table design from scratch.
Scalability Azure Synapse Analytics can scale out (or in) compute in
just minutes, so you can quickly tune your cluster to handle different
situations increasing or decreasing data warehouse units (DWUs) for
your service. Moreover, the cluster can be paused when not needed in
order to save on compute costs. This last aspect is important if you
consider that a database that supports an analytics workload is rarely
online. Instead, in many cases it has a specific time window during the

night or day in which it receives fresh data and updates the
downstream serving layer (data sets, OLAP cubes, and so on), while
for the rest of the day nobody accesses it.
Security Azure Synapse Analytics benefits from many security
features that protect its infrastructure and the data stored in it. In
addition to Azure Virtual Network (VNet) security and the Azure SQL
Server firewall, it has all the typical security mechanisms of SQL
Server such as encryption (at rest, through Transparent Data
Encryption [TDE], and in transit); user authentication; and object,
row, and column security. It also comes with the Advanced Data
Security (ADS) package at no cost, which includes tools like Data
Discovery & Classification and Vulnerability Assessment. In addition,
it contains an AI-powered service called Advanced Threat Protection,
which proactively monitors database activity for detecting suspicious
behaviors, anomalous access patterns, and malicious attacks.

Unlike typical OLTP database engines, Azure Synapse Analytics (and,
more generally, any MPP architecture) is not suitable for transactional
workloads, which are characterized by frequent and small read/write
operations. Instead, it shines when handling massive data load operations
and queries that perform aggregations on wide ranges of data.

The former name of the service, Azure SQL Data Warehouse, could lead
you to think that this is a new home for any data warehouse you may have.
The truth is, for data warehouses that are in the order of gigabytes, or even
a few terabytes, you should evaluate carefully in advance whether services
like Azure SQL Database or Azure SQL Managed Instance represent a
better option. Parameters that drive that choice are storage and compute
costs and limits, target uptime, scalability, security features, and types of
workload you have to handle.

On the data processing side, Azure Synapse Analytics can be a good
choice when it is already in the picture, in order to avoid adding other
services that would increase complexity and, probably, costs. It has a
programming surface that is familiar to those with a SQL Server
background, and its capability to reference and join data stored in local
tables as well as in external storage accounts (through PolyBase and
external tables) makes it adequate both for data processing and data

loading. However, if your architecture does not include it—for example,
when the final target of your workload is not a data warehouse—it is likely
you would rely on other services to do the required job: mapping data flows
in Azure Data Factory for batch data, or Azure Databricks (maybe
exploiting the Delta Lake storage layer), both for batch and streaming data,
could be good candidates for taking that role. The former, under the hood,
still uses Spark to perform data processing, but its full visual authoring
experience may be helpful if you are new to Spark.

 Exam Tip

Though certification exams do not include features that are in preview,
it is important to note that data processing capabilities of Azure
Synapse Analytics are rapidly expanding.

As briefly explained in Skill 1.2: Describe data analytics core
concepts, Azure Synapse Analytics aims to become a comprehensive
and unified analytics platform, enriching the same first-class data
warehouse engine with capabilities like batch processing (both with
SQL and Spark), stream processing, visual pipelines authoring,
machine learning predictions, and data visualization—all of this, tied
together by a web-native application named Synapse Studio. Read
more here: https://docs.microsoft.com/en-us/azure/synapse-
analytics/overview-what-is.

Practice Provision an Azure Synapse Analytics SQL pool
This practice guides you through the creation process of an Azure Synapse
Analytics SQL pool. Skill 4.3 uses these resources to show a simple data
engineering workload. Please remember to pause the provisioned SQL pool
when not in use to avoid incurring unwanted costs.

1. After logging in to the Azure portal, click Create A Resource.

https://docs.microsoft.com/en-us/azure/synapse-analytics/overview-what-is

2. Type Azure Synapse Analytics (formerly SQL DW) in the search
bar and select it in the search results.

3. Click Create.
4. On the Basic tab:

A. Select your subscription and resource group.
B. Select the server that will contain your SQL pool. You may

pick the one you already provisioned in the practice “Creating
an Azure SQL Database” in Chapter 2, or you can create a
new one.

C. Enter a name for your pool.
D. Select Gen2 and DW100c as the performance level. This is the

lowest level possible—and the cheapest one.
5. Skip the Networking and the Additional Settings tabs; the default

values are fine.
6. Click Review + Create.
7. If your Azure Synapse Analytics passes validation, click Create.
8. Wait for the provisioning to complete, and then navigate to the

resource and familiarize yourself with the various options at your
disposal. When you are done, go to the Overview page and pause
the SQL pool.

Skill 4.3: Describe data ingestion and
processing on Azure
Data loading and processing can be achieved in many ways, and being
aware of the pros and cons of the various options will help you choose the
most effective architecture for your workload.

In addition, orchestration is part of the game since it represents the
backbone of your solution. You want to have robust pipelines, and you
want to be able to schedule and monitor pipeline executions from a
centralized place. This is even more important in a modern data warehouse
scenario, where components may be many and disparate.

This skill covers how to:
Describe the components of Azure Data Factory (e.g., pipeline,
activities, etc.)
Describe data processing options (e.g., Azure HDInsight, Azure
Databricks, Azure Synapse Analytics, Azure Data Factory)
Describe common practices for data loading

Describe the components of Azure Data Factory
(e.g., pipeline, activities, etc.)
Azure Data Factory (ADF) is a cloud-based ETL and data integration
service. You can use it to create data-driven workflows for orchestrating
data movement and transforming data at scale.

ADF has many strong points that elevate it to an enterprise-ready on-
demand service. To list a few:

Hybrid scenario support, to seamlessly connect your on-premises
architecture to the cloud
Best-in-class integration with other popular services (Azure Storage,
Azure SQL Database, Azure Synapse Analytics, Azure Databricks, to
name a few) to quickly connect all pieces together
Visual authoring, to speed up development and maintenance
Extensibility, to cover every possible scenario with custom connectors
Continuous integration/continuous delivery (CI/CD) native
integration, to integrate ADF workflows with your existing DevOps
pipelines
An API layer, to control and manage your data factory from your
existing application and script suites

A broad monitoring and alert system, so you can take quick action
when something goes wrong

Before going into more depth on the service component, we think it is
important that you understand what ADF is not. Azure Data Factory is not
a transformation engine in itself; rather, it orchestrates external services to
perform data processing. ADF has only limited data conversion capabilities
when performing data movement from a source to a destination, like
changing file format or flattening out JSON nested structures. Even when
you author a visual workflow using mapping data flows (more on that in
the next section), ADF behind the scenes will leverage an on-demand Spark
cluster to run it.

ADF can be used in every phase of an ETL/ELT process. In fact, its
native integration with the most important platforms and services, and its
scalable data movement engine, allow for a broad range of uses, like data
ingestion (the “E,” or “extract,” phase) and orchestration of complex
workflows.

 Exam Tip

Another option for orchestration is Oozie on HDInsight, but it supports
only a subset of job types. Learn more about it here:
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-use-oozie-
linux-mac.

An Azure subscription can contain one or more data factories (think of
them as ADF instances). Besides the obvious reasons for isolating one
project from another, you may need to provision for, as an example,
supporting multiple stages, like development, test, user acceptance testing,
and production.

https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-use-oozie-linux-mac

 Exam Tip

The Azure portal is not the only way to create a data factory. Other
common methods are PowerShell, .NET, Python, REST, and ARM
templates. Read more here: https://docs.microsoft.com/en-
us/azure/data-factory/introduction#next-steps

Provisioning a data factory is easy. To create it from the portal, you can
search for data factory in the search box at the top of the Azure portal
page. Then follow these steps:

1. On the Data Factory page, shown in Figure 4-13, click Create.

Figure 4-13 The Azure Data Factory creation page

https://docs.microsoft.com/en-us/azure/data-factory/introduction#next-steps

2. On the Create Data Factory page, you find four tabs:
A. Basics Here you have to choose the subscription and the

resource group that will contain your ADF instance. If the
resource group does not yet exist, you can create it from here.
Then you have to fill in specific properties of your instance: its
Azure region; its name, which must be globally unique; and its
version (v1 is considered legacy and should not be used for
new deployments).

B. Git Configuration On this tab you can set up the source
control binding for your instance. If you want to set it up later,
just select the option Configure Git Later. If you opt to set it
up here instead, you first have to indicate where your
repository is hosted: on Azure DevOps or GitHub. Whether
you choose one or the other, you have to fill in your repo
properties: account name, project name (Azure DevOps only),
repo name, branch name, and root folder.

C. Tags Here you can specify any tag for your instance. Tags are
name/value pairs assigned to a particular resource, mostly for
billing consolidation.

D. Review + Create Here you have the entire configuration
description, and you click Create to confirm the resource
creation.

3. The portal generates the template, sends it to be deployed, and
displays a page with a Your deployment is in progress message,
informing you that it is currently in the creation phase.

 Exam Tip

A single data factory is bound to the source control system as a whole.
You cannot push just part of the current changes to the repository
(technically speaking, you cannot do cherry-picking of your
modifications), but all your code changes have to be committed
together.

Once your provisioning is complete, you can start authoring it. To do so,
from the Overview page of your resource click Author & Monitor, as
shown in Figure 4-14.

Figure 4-14 Azure Data Factory Overview page

A new browser page opens, pointing to the URL
https://adf.azure.com/home, followed by a parameter that contains the
resource URI of the data factory you are going to author. After signing in

https://adf.azure.com/home

(you do not have to reenter your credentials, since single sign-on carries
them over for you), you access the multitenant web application that lets you
develop, manage, and monitor resources and pipelines of your data factory.
The home page of that application, shown in Figure 4-15, presents a quick
collapsible toolbar on the left, with four menu items:

1. Data Factory This is the home page where you are.
2. Author This is where you create your pipelines.
3. Monitor This is where you can analyze and keep track of all

executions of your pipelines or triggers.
4. Manage This is where you can configure properties or resources

that affect the whole data factory and not a single pipeline, like
connections to data stores, source control integration, and so on.

Figure 4-15 Azure Data Factory visual authoring tool home page

This page contains shortcuts to common tasks in data factory
development:

Create Pipeline This opens the Author page with an empty pipeline
ready to be edited.
Create Data Flow This opens the Author page with an empty
mapping data flow ready to be edited.

Create Pipeline From This opens the Template gallery, where you
can choose among ready-to-use templates that cover many common
patterns in data pipeline development.
Copy Data This opens the Copy Data wizard, which guides you in
creating a data movement pipeline through a few simple steps (more
on this later).
Configure SSIS This opens the Azure-SSIS integration runtime
creation tab (more on this later).
Set Up Code Repository This opens the source control binding
configuration tab.

Scrolling down a bit, you find a useful feed of videos and a collection of
quick start tutorials.

Need More Review? Azure Data Factory templates

Templates are a convenient way to implement well-known
patterns without reinventing the wheel. You can read more about
them here: https://docs.microsoft.com/en-us/azure/data-
factory/solution-templates-introduction.

Before we explore the Author section, it is worth describing the most
important components of a data factory.

The core of ADF is the integration runtime (IR), since it is the compute
infrastructure used to provide integration capabilities. You can have three
different types of IR, and you can create more than one IR for each type if
needed.

1. Azure IR This is the basic IR, and there must be at least one of this
kind in a data factory. This is the engine that performs data
movements between cloud data stores; also, it is in charge of
dispatching external activities in public networks or executing data

https://docs.microsoft.com/en-us/azure/data-factory/solution-templates-introduction

flows. It has great elasticity, and you can control how much it could
(or should) scale by tuning Data Integration Unit (DIU) properties
for each activity in your pipeline that uses it.

2. Self-hosted IR You can use this to solve two problems:
A. You have resources in a private network or behind a firewall

that do not face the internet.
B. You have data stores that require bring-your-own-driver such

as SAP Hana and MySQL.
This runtime is usually installed on one (or more, to enable scale-
out) VM inside your private network, and subsequently it is linked
to your data factory through the creation of an additional IR of type
Self-Hosted. You do not need to open any port to allow inbound
traffic, since it only makes outbound HTTP-based connections to
the internet. It is important to note that the VM that acts as a
gateway may become a weak point or a bottleneck of your
architecture, and you have to ensure that it has enough compute
power to support the required workload.

3. Azure-SSIS IR This runtime supports the execution of traditional
SQL Server Integration Services (only the project deployment mode
is supported) in an on-demand cloud environment; it supports both
Standard and Enterprise editions. It comes in handy in those cases
when you have an on-premises workload that is based on SSIS
packages and you want to move this workload to Azure PaaS with
minimal effort (this operation is called lift-and-shift). In order to
make it work, you have to follow these steps:

A. Create an Azure SQL Database or a Managed Instance to host
the SSIS catalog, if you do not have one already.

B. Create an Azure-SSIS IR in your data factory, pointing to the
database that hosts the SSIS catalog. In this step, you can also
specify the location of a setup script for third-party
components and libraries your packages may need to use; this
script gets executed when provisioning the on-demand
Integration Services environment at runtime.

C. Deploy your SSIS project to the previously created SSIS
catalog.

Following these steps, you are able to execute the deployed SSIS
packages in your ADF pipelines through the Execute SSIS Package
activity. Be aware that the location you choose for the Azure-SSIS
IR should be the same as the one of your Azure SQL Database or
Managed Instance server; network communication between the
SSIS catalog and the engine that actually executes the package can
be intensive (think about logging, for example).

 Exam Tip

Data Integration Units are a key concept in data factory, both for
performance tuning and for having predictable costs. Learn more here:
https://docs.microsoft.com/en-us/azure/data-factory/copy-activity-
performance-features#data-integration-units.

Need More Review? Integration runtimes

You can read more about integration runtimes here:
https://docs.microsoft.com/en-us/azure/data-factory/concepts-
integration-runtime.

Need More Review? Migrate on-premises SSIS workloads
to SSIS in ADF

If you want to migrate your SQL Server Integration Services
packages to the Azure-SSIS IR, go here:
https://docs.microsoft.com/en-us/azure/data-factory/scenario-
ssis-migration-overview.

https://docs.microsoft.com/en-us/azure/data-factory/copy-activity-performance-features#data-integration-units
https://docs.microsoft.com/en-us/azure/data-factory/concepts-integration-runtime
https://docs.microsoft.com/en-us/azure/data-factory/scenario-ssis-migration-overview

Need More Review? ADF and integration runtime location

Though you have to choose a location for your data factory at
creation time, this is not necessarily the location where your data
movement is performed. Under some circumstances, integration
runtimes have the ability to change the location dynamically
depending on where the source and destination are located. Read
more here: https://docs.microsoft.com/en-us/azure/data-
factory/concepts-integration-runtime#integration-runtime-
location.

Other important components are linked services, data sets, activities,
and pipelines. Figure 4-16 shows the relationships between them and how
they work together.

Figure 4-16 The logical relation between linked services, data sets,
activities, and pipelines

https://docs.microsoft.com/en-us/azure/data-factory/concepts-integration-runtime#integration-runtime-location

1. Linked service This is a connection to a data store or service, and
activities use it to actually perform the work, such as copying data
between stores or executing a particular job.

2. Data set This represents data stored (or to be stored) on a linked
service, along with its format and/or schema, if known. If the store
is a database, it usually maps to a table or a view; if the store is an
object store, like Blob storage or Data Lake storage, it is some kind
of file format, like CSV, Parquet, Avro, JSON, binary, and so on.

3. Activity This is a task inside a pipeline, and it is responsible for
performing the actual work. Data sets are used to indicate the
source and the sink of the activity, and depending on the type of the
activity you could have both source and sink (in the Copy activity),
just one of them (in the Lookup activity) or none of them (in the
Execute SSIS Package activity).

4. Pipeline This is a logical grouping of activities. It represents the
entry point of a data factory job; in fact, you cannot have activities
outside of a pipeline. A pipeline can be invoked manually or
programmatically, or it can be activated by a trigger. Pipelines can
be nested using the Execute Pipeline activity, so you can physically
separate the stages of your workload and orchestrate them
leveraging a master/child pattern.

Need More Review? Pipeline execution options and
triggers

To learn more about the possible ways to execute a pipeline and
all the available types of trigger, go here:
https://docs.microsoft.com/en-us/azure/data-factory/concepts-
pipeline-execution-triggers.

Now that you have a better understanding of which elements make up a
data factory, let us see how to use them. Clicking the Author menu item in
the left toolbar opens the UI displayed in Figure 4-17.

https://docs.microsoft.com/en-us/azure/data-factory/concepts-pipeline-execution-triggers

Figure 4-17 The Author page in the Azure Data Factory visual tool

The top bar contains typical commands such as Publish All and Discard
All (both grayed out, since there is no modification yet); a Data Flow
Debug switch, which is currently off (more on this in the next section about
processing); and the ARM Template menu, where you can export the whole
Data Factory ARM template or import an ARM template of a previously
exported factory.

The left pane contains a tree view named Factory Resources. From here,
you can create a new pipeline, data set, or data flow, and you can navigate
or search through the already existing ones.

If you click the plus sign next to the search input box and select Pipeline
from the menu that appears, a new tab containing a blank pipeline is added
to the central pane (see Figure 4-18).

Figure 4-18 The pipeline creation page in the Azure Data Factory
visual tool

The tab presents a familiar interface; on the left is a toolbar with various
activities you can drag and drop to the central canvas; at the top are
commands to save, validate, debug, or trigger the pipeline; at the bottom is
a contextual menu where you can set properties and parameters affecting
the pipeline activities; and on the right is the pipeline General Properties
tab, where you can set the pipeline name, enter a description, or limit the
concurrency of executions at runtime (in case multiple invocations are
issued at the same time or while the pipeline is already running).

Need More Review? Azure Data Factory parameters

Parameters are a simple yet powerful tool to make your factories
reusable. Also, the development team has recently introduced the
concept of global parameters, which speeds up the development
of nested pipelines, removing the hassle of redefining them at
each level to make them “bubble” up to the outer level. The
following white paper is comprehensive and a must-read to
master parameters mechanics: https://azure.microsoft.com/en-
us/resources/azure-data-factory-passing-parameters/.

Following is a short description of the categories of activities you can
use in your pipeline:

Move & Transform This contains activities for data movement and
transformation, such as Copy Data and Data Flow.
Azure Data Explorer This contains the Azure Data Explorer
command, which can be used to send commands to an Azure Data
Explorer cluster.
Azure Function This contains the Azure Function activity, which can
be used to execute an existing Azure Function to run custom code.
Batch Service This contains the Custom activity, which can be used
to execute custom code deployed on the Azure Batch service.
Databricks This contains the Notebook, JAR, and Python activities,
which can be used to issue Spark jobs to either a provisioned or an on-
demand Databricks cluster.
Data Lake Analytics This contains the U-SQL activity, which can be
used to dispatch U-SQL jobs to the Data Lake Analytics PaaS service.
General This contains several mixed-purpose activities. The most
notable activities are the Execute Pipeline activity, used to nest
pipeline executions; the Execute SSIS Package activity, used to
execute Integration Services packages on an Azure-SSIS IR; the

https://azure.microsoft.com/en-us/resources/azure-data-factory-passing-parameters/

Stored Procedure activity, used to execute a stored procedure
contained in a cloud or on-premises SQL Server database; and the
Web activity, used to call a custom REST endpoint.
HDInsight This contains the Hive, MapReduce, Pig, Spark, and
Streaming activities, which can be used to issue different types of
Hadoop jobs to either a provisioned or an on-demand HDInsight
cluster.
Iteration & Conditional This contains the Filter, For Each, If
Condition, Switch, and Until activities, which can be used to control
or alter the flow of the activities in your pipeline.
Machine Learning This contains the Machine Learning Batch
Execution, Machine Learning Update Resource, and Machine
Learning Execute Pipeline activities, which can be used to interact
with the Azure Machine Learning Studio (classic) service.

Need More Review? Data factory activities

For a greater in-depth look at data factory activities, go here:
https://docs.microsoft.com/en-us/azure/data-factory/concepts-
pipelines-activities.

Figure 4-19 shows how the UI changes after you drag and drop the
Copy Data activity into the pipeline canvas and select it.

https://docs.microsoft.com/en-us/azure/data-factory/concepts-pipelines-activities

Figure 4-19 The Copy Data activity

Copy Data is the main activity for performing data loading, and it
requires you to specify a source and a destination. The bottom menu, which
is contextual to the item selected, reflects that and can be used to fine-tune
the activity. It contains six tabs:

1. General Here you can set common properties of your activity, like
name, description, and timeout value. Also, you can define whether

the activity should retry when an error occurs and the timeout
period between retries, and whether input and output of the activity
should be secured (through the Secure Input and Secure Output
properties). Since input and output of activities are logged in plain
text as JSON objects, securing them can be useful to avoid
disclosing of sensitive information; in fact, when secured, input
and/or output are not captured at all. This tab stays pretty much the
same for the majority of data factory activities.

2. Source Here you select the source data set of the activity from a
drop-down list. If the source data set does not exist yet, you can
click the plus button to open a new tab where you can create it (data
set creation is covered just after this paragraph). For example, for a
data set that maps a SQL Server table, see the tab’s options in
Figure 4-20.

Figure 4-20 Data set options for a SQL Server table

From here you can preview source data, define timeout and
isolation levels for data retrieval, and enable the use of partitions to
parallelize read operations (either physical partitions, if present, or
based on a dynamic range; beware that this second option is more

prone to performance problems when there is no index that covers
the target field). You can also add extra columns based on
expressions, static values, or reserved variables (like $$FILEPATH
for file-based sources). The Use Query field, specific to database
sources, has interesting values you can choose from: the Table
option is straightforward, and at a first glance the Query and Stored
Procedure options may seem not applicable (or partially applicable)
to a data set that points to a table. The reality is, activities can use a
data set as a simple “bridge” to the underlying linked service—in
this case, the SQL database server—and issue commands not
related to the object mapped to the data set. For example, you can
completely ignore the SalesOrderHeader table and query the source
for the SalesOrderDetail table instead, or call an existing stored
procedure. Though this flexibility may seem to be a good thing, it is
always better to have a data set with a clear scope to avoid
unintentionally messing up activities later in the development
process.

3. Sink Here you select the destination data set, in the same way you
do for the source data set.

4. Mapping Here you can optionally define a mapping between the
source and the sink fields, either importing them from the data sets
or entering them manually, also optionally selecting a subset of the
source fields. If you leave this tab empty, schema is inferred at
runtime. It is not uncommon to have loose schemas in the Extract
phase in modern data warehouse scenarios, since sources may be
disparate and could change without notice. If you follow this
approach, data integrity and schema validation are often asserted in
an early stage of the subsequent data process step. A typical
example is when data engineers extract data from an enterprise data
warehouse to make it available to the data science team. In this
case, data sets may be very wide, since data scientists need to
analyze as many fields as possible in the features selection and
engineering phase in order to determine whether the machine
learning model would benefit from them. Defining and maintaining
a schema of the source tables may be time consuming, and
moreover, it may not give any advantage to the process, because
fields could be ignored or transformed afterward.

5. Settings Here you can tune performance-related parameters: degree
of parallelism, to a maximum of 8; data integration units to be used,
if fixed or chosen automatically by the engine; fault tolerance
settings like, for example, whether to skip incompatible rows for
database sources, or whether to skip missing files for file-based
sources; and whether to enable staged copy.

6. User Properties Here you can set name/value properties, which can
be useful to better track your activity in the monitoring logs.

Need More Review? Staged copy

To learn more about staged copy typical use cases, go here:
https://docs.microsoft.com/en-us/azure/data-factory/copy-
activity-performance-features#staged-copy.

To create a data set, in the Factory Resources pane click the plus sign
next to the search field, and then select Data Set from the menu that
appears. A new tab opens on the right (see Figure 4-21), asking you to
select a data store to proceed.

https://docs.microsoft.com/en-us/azure/data-factory/copy-activity-performance-features#staged-copy

Figure 4-21 The Select A Data Store tab in data set creation

Data sets are tightly related to data factory connectors, which enable the
service to interact with remote stores in many ways. The link to the data
stores is the linked service component, which contains all the relevant
information to connect to it, like its URL and authentication information.
You can consider a data set a named view, which points or references data
on the remote store so that activities can actually use it.

 Exam Tip

Connectors get updated very frequently, and more get added every
month or so. Though you do not need to know all the 80+ available
today and exploring them is beyond the scope of this book, being
aware of the state of the art is important when building a new solution
or evolving an existing one. Learn more here:
https://docs.microsoft.com/en-us/azure/data-factory/connector-
overview.

Following is a list of the available categories of data stores connectors
and a short description of each one of them; you can recognize some of
them since they are covered in Chapter 3. Also, please note that some data
stores belong to multiple categories; Azure SQL Database, for example, can
be found in both the Azure and the Database categories.

All This is just an unfiltered view of all available connectors.
Azure This contains all the supported Azure services, like Azure Blob
storage, Azure Data Lake storage Gen1 or Gen2, Azure Cosmos DB
(Mongo or SQL API), Azure SQL Database, Azure Managed
Instance, Azure Synapse Analytics, and more.
Database This contains all the supported database services; here you
can find both Azure and third-party services, like Amazon Redshift,
IBM DB2, Google BigQuery, Hive, Oracle, Netezza, SAP BW, SAP
Hana, Spark, Teradata, Vertica, and more.
File This contains file services like FTP, SFTP, Amazon S3, Google
Cloud Storage, generic HTTP endpoint, and more. Also, you can
reach file shares through the File System connector, both publicly
available, like Azure Files, and on-premises or private networks,
through the Self-Hosted IR.
Generic protocol This contains more broad-use connectors, like
ODBC, Odata, REST, and SharePoint Online List.

https://docs.microsoft.com/en-us/azure/data-factory/connector-overview

NoSQL This contains connectors to NoSQL sources; at the moment,
it lists Cassandra, MongoDB and Couchbase (in preview).
Services and apps This contains connectors to popular PaaS and SaaS
services, like Amazon Marketplace, Dynamics (365, AX and CRM),
Jira, Office 365, Oracle (Eloqua, Responsys, Services Cloud, all in
preview), PayPal (in preview), Salesforce, SAP ECC, Snowflake, and
more.

By choosing a connector, you tell Azure Data Factory which type of
data set it has to handle. Some connectors require you to give further
specification; the Azure Blob storage connector, for example, has to know
which file format the data set is mapping to better shape the configuration
pane with the proper options (see Figure 4-22).

Figure 4-22 The file format specification selection screen for the Azure
Blob storage connector

Selecting the DelimitedText format, for example, leads you to another
tab where you specify the data set name, whether the mapped files have a
header row, and the linked service that points to the data store.

If the linked service does not exist yet, click the plus sign, and the New
Linked Service tab appears (see Figure 4-23).

Please note the title of the tab in Figure 4-23: within parentheses it reads
“Azure Blob Storage,” since the type of this linked service is strictly related

to the kind of data set we are creating. Instead, creating a linked service
from the Manage section of Data Factory opens up all the possible
connectors to choose from; beside the Data Store section you can find also
a Compute section, with connectors specific to data processing (as shown
in Figure 4-24), like Azure Databricks, Azure HDInsight, and more.

Figure 4-23 The New Linked Service tab

Figure 4-24 The available connectors for data processing

To create an Azure Blob storage linked service, you have to provide the
following information:

1. Name It must be unique within a data factory.
2. Description An optional description.
3. Connect Via Integration Runtime Here you choose the IR used

by the component; you can also create a new one if needed.
4. Authentication Method It can be one of the following:

A. Account key You have to provide a connection string to your
storage account either manually, selecting it from a
subscription you have access to, or through an Azure Key
Vault secret (more information in a moment).

B. SAS URI You have to provide a SAS URL/SAS token pair,
either manually or through Azure Key Vault secrets.

C. Service Principal You have to provide your storage account
endpoint and type, either manually or by selecting it from a
subscription you have access to; your service principal tenant,
ID, and key (this can be retrieved via Azure Key Vault); and
the Azure cloud type it is registered to.

D. Managed Identity You have to provide your storage account
endpoint and type, either manually or by selecting it from a
subscription you have access to.

5. Annotations Custom name/value pairs to be associated to the
resource.

6. Advanced Here you can set properties not yet exposed by the UI,
expressing them in JSON format

 Exam Tip

Azure Key Vault is a service that provides a way to centralize the
storage of sensitive information, such as keys, certificates, and secrets,
in a highly secure repository. Data Factory has a deep integration with
it, and pretty much all the available linked services support it. To learn
how to enable and use Azure Key Vault in your data factory, go here:
https://docs.microsoft.com/en-us/azure/data-factory/store-credentials-
in-key-vault.

After you fill in all the required fields, you can test the connection to the
storage account and/or proceed with its creation by clicking Create. If no

https://docs.microsoft.com/en-us/azure/data-factory/store-credentials-in-key-vault

errors arise, you return to the previous screen to complete the definition of
the DelimitedText data set, and it now presents two additional fields:

1. File Path Here you can optionally specify a container, folder,
and/or file for the data set; wildcards are accepted. If you leave this
field empty, it means that you want to just point to the storage
account and give more freedom to the activity that will use the data
set. As an example, you can specify just the container name and the
root folder, and then in a Copy Data activity iterate recursively its
children to move the whole directory content.

2. Import Schema If you specified a full file path, you could decide
whether or not to import the file schema. If you want to import it,
you can get it from the file you are pointing to or from a local
sample file. This last option comes handy when, for example, you
are creating the destination data set of a Copy Data activity and the
target does not exist yet. In this case, you may want to prepare a
sample file with the same structure of your destination and use it to
instruct the data set about the file schema.

If you click OK, your data set is finally created and opened in edit mode
(see Figure 4-25), in an interface pretty much identical to the editing of a
pipeline.

Figure 4-25 The data set edit window

This window has the following tabs:

1. Connection This contains many properties you already set in the
creation process, but it also introduces newer ones that define the
delimited text import specification, such as Compression Type,
Column and Row delimiters, Encoding, Escape and Quote
characters, and the value that has to be treated as Null. You can use

the Edit checkbox next to each field to enter dynamic values
leveraging the Data Factory expression language.

2. Schema This contains the data set schema, if already imported. You
can also edit the current schema, import it again (or for the first
time), and clear the existing one.

3. Parameters Here you can define the data set parameters, which can
be used inside expressions to customize the data set behavior.
Parameters are set by pipeline activities that use the data set. As an
example, think about a data set with a parametrized path that can be
reused in different Copy Data activities to write the same file type
in different sink locations.

 Exam Tip

Data Factory expressions and functions are powerful and can add great
versatility to your pipelines. Read more here:
https://docs.microsoft.com/en-us/azure/data-factory/control-flow-
expression-language-functions.

Practice Use the Copy Data Wizard to create and run a simple pipeline
This practice shows you how to use the Copy Data Wizard to create from
scratch a simple yet complete pipeline that moves data out of an Azure SQL
database and ingests it into an Azure Blob storage container. The wizard
uses resources you have already provisioned in the practice sections of
Chapters 2 and 3, so if you want to follow this step-by-step procedure be
sure to complete those practice sections first.

First, we have to create a view named vProductModel on the source
database that hides the XML field CatalogDescription of
SalesLT.ProductModel since we do not need that field. In addition, creating
a view instead of reading the source table directly is considered a best
practice to decouple source and sink and to maintain the stability of the

https://docs.microsoft.com/en-us/azure/data-factory/control-flow-expression-language-functions

schema. After that, you provision a data factory and run the Copy Data
Wizard.

1. After logging in to the Azure portal, navigate to the Azure SQL
database you created in Chapter 2. If you used the sample names
proposed in that practice, the database name should be DP900_1.

2. Go to the Query Editor (Preview) page from the left-hand menu,
log in, and type in the editor the code in Listing 4-1 (you can find
the same code in the vProductModel.sql file in the companion
content).
Listing 4-1 vProductModel view creation
Click here to view code image
DROP VIEW IF EXISTS SalesLT.vProductModel;
GO
CREATE VIEW SalesLT.vProductModel AS
SELECT
 pm.ProductModelID,
 pm.Name,
 pm.rowguid,
 pm.ModifiedDate
FROM
 SalesLT.ProductModel as pm

3. Run the query to create the view, and wait for completion.
4. Back in the portal home page, click Create A Resource.
5. Type Data Factory in the search bar and select it in the search

results.
6. Click Create.
7. On the Basic tab:

A. Select your subscription and resource group.
B. Select the same region you used in the previous practices

(North Europe).
C. Enter a globally unique name for your data factory.
D. Leave V2 as the version.

8. On the Git Configuration tab, select Configure Git Later.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch04_images.xhtml#p04lis01a

9. On the Networking tab, leave Managed Virtual Network
(Preview) set to Disabled and Connectivity Method set to Public
Endpoint.

10. Click Review + Create.
11. If your data factory passes validation, click Create.
12. When the provisioning completes, navigate to the resource, select

the Overview page, and click Author & Monitor; the visual
authoring tool appears.

13. On the Data Factory UI home page, click the Copy Data icon; it is
usually the fourth from the left. A dialog box appears, with six main
steps you must follow.

14. In the Properties step, enter AzureSQL_to_Blob as the task name,
select Run Once Now under Task Cadence Or Task Schedule,
and leave the other options at their defaults. Click Next.

15. In the Source step:
A. On the Source Data Store page, click Create New

Connection.
B. Type Azure SQL Database in the search bar, click Azure

SQL Database, and then click Continue.
C. Type DP900_1 for Linked Service Name.
D. Leave AutoResolveIntegrationRuntime as the Connect Via

Integration Runtime value.
E. Leave From Azure Subscription as Account Selection

Method and, in order, select your subscription, server, and
database. If you used the sample names in Chapter 2, the
database name should be DP900_1.

F. Fill in the User Name and Password fields, do not add any
additional connection properties or annotations, and then click
Test Connection. If you cannot establish a connection, make
sure that in the Firewalls And Virtual Networks section of
your database server the option Allow Azure Services And
Resources To Access This Server is set to Yes. When you can
establish a connection successfully, click Create.

G. Back on the Source Data Store page, select the DP900_1
connection icon and click Next.

H. On the Table Selection page, select the Show Views option
and select the following tables and views: SalesLT.Customer,
SalesLT.Product, SalesLT.ProductCategory,
SalesLT.SalesOrderDetail, SalesLT.SalesOrderHeader, and
SalesLT.vProductModel (be sure to select the view you
created, and not the table); then click Next.

I. Click Next, leaving tables options set to their defaults.
16. In the Destination step:

A. On the Destination Data Store page, click Create New
Connection.

B. Type Azure Blob Storage in the search bar, select Azure
Blob Storage, and then click Continue.

C. Type DP900sa for Linked Service Name.
D. Leave AutoResolveIntegrationRuntime as the Connect Via

Integration Runtime value.
E. Make sure Connection String is selected, and leave From

Azure Subscription as Account Selection Method. Then, in
order, select your subscription and the storage account you
created in the practice “Creating a storage account and
container using PowerShell” in Chapter 3; Data Factory gets
the connection string of the storage account and saves it
(encrypted) in the linked service. In addition, ADF is well
integrated with Azure Key Vault, and you may want to use that
connection method instead. In this case, you have to select the
linked service that points to the Azure Key Vault (or create it
first) and provide the name and the version of the secret that
stores the connection string to the storage account. Do not add
any additional connection properties or annotations, and then
click Test Connection. If everything works as expected, click
Create; if not, check again if the storage account properties
and the authentication information are all correct. Note that
this storage account is different from the one you created in
the practice “Creating a storage account” (in Chapter 3), since
the latter is a Data Lake Storage Gen2. In fact, it has been
created with the Hierarchical Namespace option selected. In a

real-world project, it is common to leave that option
unselected for the staging data store so that only minor costs
will be incurred and to select it only for the data store accessed
by the end users (for example, where you store curated data
sets), if present.

F. Back on the Destination Data Store page, click DP900sa
Connection and then click Next.

G. Enter companyblobs/extract/azuresql/ in the Folder Path
field.

H. Select Edit File Names One By One and replace all “.” (dot)
characters with “_” (underscore). This changes
SalesLT.Customer to SalesLT_Customer, for example, and
changes SalesLT.vProductModel to SalesLT_ProductModel.
Leave File Name Suffix, Max Concurrent Connections, and
Block Size at their default values. Then, click Next.

I. In the File Format settings, select the Add Header To File
check box, and leave the other options at their defaults. Then,
click Next.

17. In the Settings step, leave the default values unchanged and click
Next.

18. In the Summary step, verify that everything is fine, and then click
Next. Notice that the wizard does not provide a way to change the
name of the source and destination data sets—you have to change
them later to more meaningful values.

19. In the Deployment step, wait for completion and then click Edit
Pipeline. As part of the deployment, the wizard also runs the
pipeline; ignore it, since you are going to re-execute it manually in
a moment.

20. In the pipeline canvas, you see a ForEach activity, and in the bottom
panel there is an array parameter that contains all the source tables
you selected and the respective destination file name. If you select
the ForEach activity and select the Settings tab, you see that the
parameter is used to set the Items property. You can also see that the
Sequential property is not selected; that means the ForEach iterates
array items in batches. You can modify the batch size using the
Batch Count property.

21. If you click the pencil icon within the ForEach activity, the canvas
changes to reflect the activity content, which consists of a Copy
activity. ForEach iterates its source items and invokes the Copy
Data activity for each one of them, using parameters to customize
source and destination data sets for every execution. ForEach
accesses the @item() function, which returns the currently iterated
JSON object. To see how to use it properly, click the Copy Data
activity and check the Dataset Properties section of the Source
and Sink tabs.

22. To execute the pipeline:
A. Click the Add Trigger icon in the top bar, and then select

Trigger Now from the drop-down menu that appears.
B. In the Pipeline Run window, leave everything unchanged and

click OK.
You are notified that the pipeline is running and, shortly after,
that the pipeline has completed its execution.

23. To monitor the pipeline execution:
A. Click the Monitor icon in the left-hand Azure Data Factory

UI panel.
B. In the Pipeline Runs Central pane, you see a list of all the

latest pipeline executions. Clicking the pipeline name in one of
the rows leads you to specific execution details.

C. The Execution Details page shows the classic pipeline
canvas. Notice that a green or red icon next to its activities
shows the outcome at a glance.

D. At the bottom, you see a list of all activities invoked in the last
run, along with some execution details such as outcome and
duration. Notice that the Copy Data activity has been executed
as many times as the number of source tables you selected—in
this example, six.

E. When you hover your mouse over one of these rows, three
icons appear: Input, Output, and Details. If you click the
Details icon (which looks like an eyeglass), a floating pane
opens, displaying a graphical summary of the Copy Data
execution. Here you can find important information such as

the number of records transferred, total size of data moved,
number of data integration units used, and a breakdown of the
total execution time.

24. Using the Azure Storage Explorer desktop tool, check that the
files have been effectively created. As an alternative, if you use the
web version you can find the web version of the Storage Explorer
tool in the Azure portal, in the section Storage Explorer (Preview)
of your storage account resource page. Your storage account has
now six new files in it under the path /extract/azuresql in the
companyblobs container—one for each of the source tables.

 Exam Tip

There are three types of triggers in Data Factory: schedule, tumbling
window, and event-based. To learn more, go here:
https://docs.microsoft.com/en-us/azure/data-factory/concepts-pipeline-
execution-triggers.

Need More Review? Monitor a data factory

Monitoring of data factories is a complex topic that is outside the
scope of this book. To learn more about how to visually monitor
a Data Factory, go here: https://docs.microsoft.com/en-
us/azure/data-factory/monitor-visually.

If you prefer to use Azure Monitor to centralize the monitoring of
multiple services and applications in one place, Azure Data
Factory does not make any exception since it has a strong
integration with it. Read more here:
https://docs.microsoft.com/en-us/azure/data-factory/monitor-
using-azure-monitor.

https://docs.microsoft.com/en-us/azure/data-factory/concepts-pipeline-execution-triggers
https://docs.microsoft.com/en-us/azure/data-factory/monitor-visually
https://docs.microsoft.com/en-us/azure/data-factory/monitor-using-azure-monitor

Describe data processing options (e.g., Azure
HDInsight, Azure Databricks, Azure Synapse
Analytics, Azure Data Factory)
When it comes to data processing, a lot of services and possibilities open
up, and you should view this in a very positive way.

At first glance, choosing one path over another may seem very difficult.
Azure offers many services that have capabilities that overlap in many
areas, so it is always better to start evaluating those you are familiar with.
At the same time, you should avoid the bias known as the law of the
instrument: “If all you have is a hammer, everything looks like a nail.”
Also, try to choose a service taking into account the whole picture.

For example, suppose you plan to provision an Azure Databricks
workspace to enable data scientists to perform advanced analytics, and you
have to decide which engine to use to process a stream of data. In this case,
you would probably choose Spark Streaming over Azure Stream Analytics
so that you can avoid having to maintain an additional service in your
architecture. However, to do so you have to keep your Spark cluster online
at all times, and it is important to do a rough calculation of costs before
making any choice.

As another example, suppose you have to do transform some data before
loading it into Azure Synapse Analytics—such as joining two input files by
a specific key to take just the common rows between the two. As in the
earlier example, suppose that Azure Databricks is already part of the
architecture. In addition, you are using Azure Data Factory for
orchestration. So, you have at least three options:

Azure Databricks Notebook This option requires you to write some
Spark code to perform the join, to have a cluster ready to do the job,
and to add a Notebook activity to a new or existing pipeline to chain it
to the batch workflow at the right point, just before inserting data into
the target database.

Azure Data Factory Mapping Data Flows This option is code-free,
since the mapping data flows feature has a visual authoring UI.
However, you are still using Spark behind the scenes in an on-demand
fashion, so the additional cost for the compute is still there. You do not
have to manage the cluster since Azure manages it for you, and you
just pay for what you use. As the last step, you have to add a mapping
data flow activity to a new or existing pipeline to chain it to the batch
workflow at the right point, just before inserting data into the target
database.
Azure Synapse Analytics This option leverages the PolyBase
component to map the files to a local table so that you can write a
simple view or stored procedure in T-SQL language to perform the
join. Since the service is probably not paused (data has to be loaded
into it just after the transformation), if the transformation step takes
little time to execute, this option could be the less expensive one.
Moreover, though you still need to orchestrate this step in a pipeline
through the proper activity, the transformation and loading phases take
place in the same engine, requiring one less step in the orchestration
pipeline.

All these options are valid from a general point of view, but when you
put them in the context of your solution, one of them may emerge as the
best choice. In this example, the third one can be seen as the best trade-off,
even though it is probably not the fanciest one (just the good old T-SQL we
know). It is a common pitfall to mark some options as “obsolete” or not
“cloud-like enough,” but it is important to put aside preconceptions and just
choose the most proficient service for your specific solution.

Every engine requires a specific approach, and this section shows you
how to perform the same task in four different ways, using, in turn:

1. Azure HDInsight
2. Azure Databricks
3. Azure Synapse Analytics
4. Azure Data Factory

Suppose you have to produce an output extraction combining the files
SalesLT_Product.txt, SalesLT_ProductCategory.txt, and

SalesLT_ProductModel.txt that you got from the corresponding tables in
your OLTP Azure SQL database in the practice “Use the Copy Data Wizard
to create and run a simple pipeline,” earlier in this chapter.

Figure 4-26 shows a diagram of the three source tables so that you can
understand the relationships that exist between them.

Figure 4-26 Schema diagram of the three source tables

Looking at the diagram, you can see that ProductCategory from
AdventureWorksLT has a self-join with itself, to represent the relation
between ProductCategory and ProductSubcategory.

The output file must include the fields listed in Table 4-1.

Table 4-1 Output field list

FIELD NAME FIELD TYPE

ProductID int

Name string

ProductNumber string

Color string

StandardCost string

ListPrice string

Size string

Weight string

ProductModelID int

ProductModelName string

ProductCategoryID int

ProductCategory string

ProductSubcategoryID int

ProductSubcategoryName string

To produce the record layout seen in Table 4-1, you need an engine
capable of the following:

1. Reaching the source files in the most convenient way possible
2. Reading their tabular-form content
3. Performing join (or join-like) operations to obtain all the needed

information about a product in the same row
4. Writing the result to a specific location

Obviously, the more straightforward way would be to create a view on
the source database that exposes the layout directly. But you might have no
opportunity to modify or create objects in application databases if they are
vendor-locked or are scattered across different databases. Another method
could be reading from a view created on another database acting as a
bridge, or even using a SELECT expression as the source of a Copy activity
in Azure Data Factory. However, in this way no decoupling would exist
between the source database and the process that transforms the data,
because most of the work is required of the source engine. In many
scenarios, this is not acceptable since access to the sources is permitted
only during a fixed time window.

Modern data warehousing often relies on distributed storage stores and
data lakes to ensure a clear separation between the sources and the
downstream processes. Also, very often data is pushed to the storage layer
by the sources in an asynchronous way and are not pulled all at once when
the batch job starts. In such cases, batch processes must have some
mechanism to prevent reading of partially written data, such as checking for
acknowledge/semaphore files, or reading past an offset ignoring rolling
data (for example, like from the previous day and back, avoiding the
current day).

Now, let us see the different engines in action.

Azure HDInsight
In the practice “Provision an HDInsight Hadoop cluster” earlier in this
chapter, you created a cluster of type Hadoop. To query data and work with
it, you have to submit Hive jobs to the cluster, using a language similar to
SQL called HiveQL.

You can submit HiveQL queries in several ways, using, for example,
web interfaces, command-line tools, desktop clients, the Hive activity in
Azure Data Factory, REST APIs, and so on. From the various options at our
disposal, we will pick Apache Ambari Hive Views.

Need More Review? Apache Hive and HiveQL

To learn more about submitting Hive queries to HDInsight, go
here: https://docs.microsoft.com/en-
us/azure/hdinsight/hadoop/hdinsight-use-hive.

As you learned in Skill 4.2, the Ambari Views web application comes
preinstalled on your HDInsight cluster, and it can be launched from the
Overview page of your resource on the Azure portal. To access the Hive
View console, just click the item with the same name in the home page of
the Ambari Views application (see Figures 4-2 and 4-4), or as an
alternative, click the square icon to the left of the username icon. Figure 4-
27 shows the Hive View console.

https://docs.microsoft.com/en-us/azure/hdinsight/hadoop/hdinsight-use-hive

Figure 4-27 Hive View console

As a first step, we need to tell the cluster where the data resides. Hive
supports two types of tables:

Internal tables Data is stored in the Hive data warehouse, located at
/hive/warehouse/ on the default storage for the cluster. Internal tables
are managed by Hive. Dropping a table would also delete the data
contained in it. Tables are typically used to store temporary data or
data that lives with the cluster.

External tables Data is stored outside the data warehouse, in any
storage accessible by the cluster. You can see the tables as a virtual
layer over the original data, and dropping the table removes only the
mapping to the data, not the data itself. External tables are typically
used when you have data that is not strictly tied to the cluster (for
example, files in a data lake) but you want or need to use Hive to work
with it.

Need More Review? Internal and external tables

You can find a very detailed blog post here:
https://docs.microsoft.com/en-
us/archive/blogs/cindygross/hdinsight-hive-internal-and-
external-tables-intro.

In our example, you will use external tables to map the source files. To
do so, you must use the create external table command. For example, to
map the SalesLT_ProductModel file, you can submit the HiveQL code
displayed in Listing 4-2.

Listing 4-2 External table creation
Click here to view code image
CREATE DATABASE IF NOT EXISTS dp900;
DROP TABLE IF EXISTS dp900.SalesLT_ProductModel;
CREATE EXTERNAL TABLE dp900.SalesLT_ProductModel
(
 ProductModelID INT,
 Name STRING,
 rowguid STRING,
 ModifiedDate STRING
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
STORED AS TEXTFILE
LOCATION

https://docs.microsoft.com/en-us/archive/blogs/cindygross/hdinsight-hive-internal-and-external-tables-intro
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch04_images.xhtml#p04lis02a

'wasbs://companyblobs@dp900sablob.blob.core.windows.net/extract/azu
resql/
SalesLT_ProductModel'
TBLPROPERTIES("skip.header.line.count" = "1");

After creating a new database named dp900 (this is not mandatory, but
you want to keep all objects in a different database than the default one that
comes with the cluster), you tell Hive the following:

1. The name of the external table, which in this case resembles the file
name

2. The schema of the table
3. The file format and type (for example, that it is a delimited text file

and the fields terminator)
4. The path to the folder containing the file, including the storage

account name and the container name
5. That the file has a header, so it has to skip the first row when

reading the data

Here are a few things worth mentioning:
The storage account must be visible by the cluster; it can be the
primary storage account or an additional one specified at provisioning,
or an additional one linked afterward.
No data movement is performed when creating the table.
Schema is inferred just when actually touching the data (schema on
read); this means that at read time Hive tries an implicit conversion of
the file content (for example, from text to INT for the ProductModelID
column). In case of failure, that cell will display NULL in the returned
record set.
The location must point to a folder, not to a single file. When reading
from the external tables, Hive applies the specified schema to all the
files in that folder and returns all the resulting records. If a file with a
different schema is found, Hive tries its best to apply the defined
schema to it, returning NULLs when conversion errors occur.

Need More Review? Hive tables and Azure Blob storage

To explore the possible options for loading data from Azure Blob
storage into Hive tables, go here: https://docs.microsoft.com/en-
us/azure/machine-learning/team-data-science-process/move-
hive-tables.

You can use the same approach to create the other two external tables
you need, SalesLT_ProductCategory and SalesLT_Product. In addition, you
can create the external table that will hold the results. Inserting data into an
external table creates one or multiple files on disk in the folder pointed to
by the table location. In fact, depending on certain factors (like, for
example, the MapReduce steps the job performs and the number of worker
nodes involved), the engine could produce multiple files in the output
folder, which are chunks of the whole file. Technically speaking, the
number of files will be equal to the number of reducers the engine will use.
Listing 4-3 shows how to create the destination table, named products_info.

Note Companion Content

The full code can be found in the hdi folder in the companion
content.

Listing 4-3 Destination table creation
Click here to view code image
DROP TABLE IF EXISTS dp900.products_info;
CREATE EXTERNAL TABLE dp900.products_info
(
 ProductID INT,
 Name STRING,

https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/move-hive-tables
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch04_images.xhtml#p04lis03a

 ProductNumber STRING,
 Color STRING,
 StandardCost STRING,
 ListPrice STRING,
 Size STRING,
 Weight STRING,
 ProductModelID INT,
 ProductModelName STRING,
 ProductCategoryID INT,
 ProductCategory STRING,
 ProductSubcategoryID INT,
 ProductSubcategoryName STRING
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
STORED AS TEXTFILE
LOCATION
'wasbs://companyblobs@dp900sablob.blob.core.windows.net/transform/h
di/products_info'

The script is similar to the one in Listing 4-2, with two differences:
The location points to a different path, which will hold the output file.
The TBLPROPERTIES option is not needed and has been removed. Note
that Hive does not have a direct way to add column names when
writing to a file, so headers will be lost in the output.

Now that you have the input and output mapped, you can perform the
required transformation. Since HiveQL has a similar syntax to SQL,
writing the transformation is straightforward, as shown in Listing 4-4.

Listing 4-4 Destination table creation
Click here to view code image
USE dp900;
INSERT OVERWRITE TABLE products_info
SELECT
 p.ProductID,
 p.Name,
 p.ProductNumber,
 p.Color,
 p.StandardCost,
 p.ListPrice,

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch04_images.xhtml#p04lis04a

 p.Size,
 p.Weight,
 pm.ProductModelID,
 pm.Name AS ProductModelName,
 psc.ProductCategoryID AS ProductSubcategoryID,
 psc.Name AS ProductSubcategoryName,
 pc.ProductCategoryID,
 pc.Name AS ProductCategoryName
FROM SalesLT_Product AS p
JOIN SalesLT_ProductModel AS pm ON p.ProductModelID =
pm.ProductModelID
JOIN SalesLT_ProductCategory AS psc ON p.ProductCategoryID =
psc.ProductCategoryID
JOIN SalesLT_ProductCategory AS pc ON psc.ParentProductCategoryID =
pc.ProductCategoryID;

The INSERT OVERWRITE TABLE command tells the engine to write into
products_info the results of the SELECT statement, overwriting the table
content. This is an effective way to extract data to HDFS storage, since
Hive is able to parallelize the process, exploiting the underlying
architecture of the distributed file system. From a logical point of view,
external tables are joined by key as if they were regular tables, but under
the hood Hive is getting the physical content of the source files and is
matching the corresponding rows by key to produce the final output.

 Exam Tip

If you want to append data instead of overwriting the table content,
you can use the INSERT INTO command.

Figure 4-28 shows the content of the table as it appears on disk.
You may notice that the file has no extension and that the name of the

external table is the name of the folder containing the file. The file name is
000000_0, which is a progressive counter of the files the Hive job produced
(the next one would be 000001_0, and so on)—in this case, just one. Hive

does not have a direct way to change this naming convention, but if for
some reason it does not work for you, you might try writing a custom
serializer in Java that overrides the default behavior. Anyway, this is
something to take into consideration for the downstream process since such
a file name is not very user-friendly. For example, if you have to share the
file with someone, you could use a Copy activity in Data Factory to copy it
to a target folder and, at the same time, assign it a more user-friendly name.

Figure 4-28 The physical content of the products_info table

Need More Review? Hive optimization

Engine and query optimization are out of scope here, but it is an
important topic. This is especially true when the volume of the
data grows, since just scaling out the cluster would not be enough
without a proper tuning of the engine and the structure of the
data. Read more here: https://docs.microsoft.com/en-
us/azure/hdinsight/hdinsight-hadoop-optimize-hive-query.

Azure Databricks
The approach you have to take when using Azure Databricks is similar to
what you have seen for Azure HDInsight. The access point to the data is the
DataFrame object, which is a layer over the data that can be instantiated in
many ways. To simplify, consider it an external table in Hive, but more
complex and powerful. Once created, a DataFrame is immutable. In fact,
performing any transformation on it produces another DataFrame as output,
which maintains the lineage with its parent. Transformations include
operations like filtering, grouping, and projecting. When you call for an
action on the DataFrame, such as displaying some records on the UI or
writing data to disk, the Spark engine runs across its lineage to track down
all the transformations it has to apply before returning the data. Then, the
engine produces the physical plan for the job and submits it to the
executors, which start collecting the data from the data store and follow the
given instructions.

Obviously, the more transformations that have been chained before
calling the action, the more difficult it will be for the engine to find the
most optimal plan. For this reason, in many cases it is better to break the
chain of transformations into smaller parts, writing intermediate results to
disk and rereading them right after creating a fresh DataFrame.

For Azure HDInsight, Spark makes some tasks easier, like, for example,
working with files stored on disk. For example, once you mounted the
storage account to the cluster (see Skill 4.2), to instantiate a DataFrame that
points to the SalesLT_ProductModel.txt file you can use one of the
syntaxes shown in Listing 4-5. In this case, we have used the PySpark
language.

https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop-optimize-hive-query

 Exam Tip

You can find the full code shown here in the notebook 01 – Transform
data in the dp900.dbc archive in the companion content. If you did the
practice “Provision an Azure Databricks workspace” in Skill 4.2, this
notebook is already available in your workspace.

Listing 4-5 DataFrame creation in PySpark
Click here to view code image
longer version
df = spark.read.format('csv').option('header',
True).load('/mnt/dp900sablob/extract/
azuresql/SalesLT_ProductModel.txt');
shorter version
df = spark.read.option('header',
True).csv('/mnt/dp900sablob/extract/azuresql/SalesLT_
ProductModel.txt');
#shortest version
df =
spark.read.csv('/mnt/dp900sablob/extract/azuresql/SalesLT_ProductMo
del.txt', header
= True);

If you are new to Spark, here are a few notes to consider:
Before you submit a command to a cluster, the notebook has to be
attached to it. You can do so manually, from the Cluster Selection
drop-down menu in the top bar, or you can let Azure Databricks attach
it to the first cluster listed in the drop-down menu. In addition, if the
cluster is not running, the engine will attempt to start it for you, or you
can start it manually in the cluster management section of the UI
before running the cell.
To interact with a Spark cluster, you must create a session and, more
precisely, a SparkSession object. Databricks creates it for you behind
the scenes, and the word “spark” in the code is shorthand for it.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch04_images.xhtml#p04lis05a

The read method of the SparkSession class returns a DataFrameReader
object, which in turn can be used to return a DataFrame, and allows for
some format specification, such as whether the source file has an
header, the file schema, and so on.
The path points directly to a single file instead of a folder. As you
have seen in the previous section, this is something Hive does not
support, but it can be done in Spark. Obviously, Spark also supports
pointing to a folder, but in addition, you can use wildcards to pick just
a sub-selection of the folder content (like, for example, *.txt).
These three different methods are equivalent in terms of performance.
In fact, they produce the same code. Most popular formats, such as
CSV, JSON, and PARQUET, have a dedicated method in the
DataFrameReader class with format-specific optional parameters, but
you can always use the more generic syntax format('<supported
format>').load('<path>').

Need More Review? DataFrameReader class

You can find more about the DataFrameReader class in the
Apache Spark documentation:
https://spark.apache.org/docs/latest/api/java/org/apache/spark/s
ql/DataFrameReader.html.

Figure 4-29 shows the output of that command. You can see that since
the engine picked just information about the column names and number and
nothing more, the command is very fast. However, the DataFrame schema is
a generic one, with all fields of type string.

https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/DataFrameReader.html

Figure 4-29 DataFrame creation output

If you want to specify a schema, you have two options:
The inferSchema option Setting this property to True when you
create the DataFrame, you instruct the engine to automatically deduce
the schema from the data. This is a handy but dangerous option, since
Spark performs a full scan of the source file(s) to understand its
schema at the time of DataFrame creation, issuing a specific job for
this task. If you are working with high (or unknown in advance)
volumes of data, this option is not advisable. In addition, the schema
may change unexpectedly on subsequent executions. In fact, as data
changes or new data comes in, it may contain dirty records, or simply
more complete ranges of values. As a result, a column that always

contained numbers could suddenly present alphanumeric characters in
some fields.
Providing a schema In this case, you create and populate a
StructType object containing the expected fields and their data type.
This object is then passed to DataFrameReader to instruct it about the
schema of the file(s) it has to read.

Listing 4-6 shows both approaches.

Listing 4-6 File schema in PySpark
Click here to view code image
1. Inferred schema
df =
spark.read.csv('/mnt/dp900sablob/extract/azuresql/SalesLT_ProductMo
del.txt', header
= True, inferSchema = True);
2. Explicit schema
from pyspark.sql.types import *;
fileSchema = StructType([
 StructField("ProductModelID", IntegerType()),
 StructField("Name", StringType()),
 StructField("rowguid", StringType()),
 StructField("ModifiedDate", StringType())
]);
df =
spark.read.csv('/mnt/dp900sablob/extract/azuresql/SalesLT_ProductMo
del.txt', header
= True, schema = fileSchema);

Figure 4-30 displays the results of both executions. You can see that
even with a file that small (11 KB in size), there is a difference in execution
time between the two approaches. The gap increases as the data volume
grows.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch04_images.xhtml#p04lis06a

Figure 4-30 Infer and explicit schema comparison

If you want to peek at the file content, you can use the show method of
the DataFrame that displays the records in plain text or, to have a fancier
result grid, the display method of Databricks that outputs the first 1,000
records of the DataFrame in an interactive table (see Figure 4-31). Such a
table can be ordered, exported, and transformed into various chart types to
see the content of the DataFrame in a graphical way.

Figure 4-31 Output of the display method

You can instantiate a DataFrame for each one of the source files with the
code in Listing 4-7. You must create two DataFrames for ProductCategory
since it has to be joined with itself.

Listing 4-7 Reading the source data in PySpark
Click here to view code image
dfProductModel =
spark.read.csv('/mnt/dp900sablob/extract/azuresql/SalesLT_ProductMo
del.
txt', header = True, inferSchema = True);

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch04_images.xhtml#p04lis07a

dfProductCategory =
spark.read.csv('/mnt/dp900sablob/extract/azuresql/SalesLT_
ProductCategory.txt', header = True, inferSchema = True);
dfProduct =
spark.read.csv('/mnt/dp900sablob/extract/azuresql/SalesLT_Product.t
xt',
header = True, inferSchema = True);

At this point, we can produce the output DataFrame. If we register each
DataFrame as a temporary table, we can use a familiar SQL syntax to join
them by using the sql command of the SparkSession object or by writing
SparkSQL code. A DataFrame also has transformations like join, groupBy,
and select, which can be used to manipulate data programmatically. But
one of the strong points of Spark is the possibility of approaching different
types of work with the semantic you like the most. The code needed to do
this is shown in Listing 4-8.

Listing 4-8 Joining data in PySpark
Click here to view code image
dfProductModel.createOrReplaceTempView('vwProductModel');
dfProductCategory.createOrReplaceTempView('vwProductCategory');
dfProductSubcategory.createOrReplaceTempView('vwProductSubcategory'
);
dfProduct.createOrReplaceTempView('vwProduct');
dfProductsInfo = spark.sql('''
SELECT
 p.ProductID,
 p.Name,
 p.ProductNumber,
 p.Color,
 p.StandardCost,
 p.ListPrice,
 p.Size,
 p.Weight,
 pm.ProductModelID
 pm.Name AS ProductModelName
 psc.ProductCategoryID AS ProductSubcategoryID
 psc.Name AS ProductSubcategoryName,
 pc.ProductCategoryID,
 pc.Name AS ProductCategoryName
FROM vwProduct AS p
INNER JOIN vwProductModel AS pm ON p.ProductModelID =

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch04_images.xhtml#p04lis08a

pm.ProductModelID
INNER JOIN vwProductCategory AS psc ON p.ProductCategoryID =
psc.ProductCategoryID
INNER JOIN vwProductSubcategory AS pc ON
psc.ParentProductCategoryID = pc.ProductCategoryID
''');

The code in Listing 4-9 executes almost instantly since it does not
include actions in it. In fact, you are just stacking some transformations
over the DataFrames instantiated in Listing 4-7.

To write the results to disk, you can use the write method of DataFrame
specifying the destination path, as shown in Listing 4-9.

Listing 4-9 Writing data in PySpark
Click here to view code image
dfProductsInfo.write.mode("overwrite").csv('/mnt/dp900sablob/transf
orm/adb/products_
info', header = True);

As you did in Hive, you point to an output folder and not a file since by
default the engine could divide it into chunks. Although you cannot change
the output file name with the DataFrame APIs, you can at least ensure
getting a single file as a result by using the coalesce method, which
narrows down the number of partitions of the DataFrame to a specified
parameter, as shown in Listing 4-10.

Listing 4-10 Writing data to a single file in PySpark
Click here to view code image
dfProductsInfo.coalesce(1).write.mode("overwrite").csv('/mnt/dp900s
ablob/transform/adb/
products_info', header = True);

Need More Review? Spark optimization

Before you change the engine behavior, it is important to
understand what is happening behind the scenes. A good starting

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch04_images.xhtml#p04lis09a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch04_images.xhtml#p04lis010a

point is this page on performance tuning in the Apache Spark
documentation: https://spark.apache.org/docs/latest/sql-
performance-tuning.html.

Figure 4-32 displays the output folder and the file content. Notice that
adding column names in Spark is straightforward compared to doing so in
Hive.

Figure 4-32 The content of the products_info directory

https://spark.apache.org/docs/latest/sql-performance-tuning.html

Azure Synapse Analytics
To read and write external data in Azure Synapse Analytics, you leverage
the PolyBase component. The procedure to follow to access a blob storage
account is similar to what we showed you with Azure HDInsight, with
some differences specific to the engine.

Need More Review? Configure PolyBase to access blob
storage

The following procedure, with many additional details and
references, can be found here: https://docs.microsoft.com/en-
us/sql/relational-databases/polybase/polybase-configure-azure-
blob-storage?view=sql-server-ver15.

To configure PolyBase to access external data in Azure Blob storage,
follow these steps:

1. Create a master key for the database if none exists.
2. Create database scoped credentials that will keep the access key to

the storage account.
3. Create an external data source pointing to the storage account and

the container inside it.
4. Create an external file format to define the types and characteristics

of your files (in our case, a CSV text file with headers and with
double quotes as a string delimiter).

In HDInsight, steps 2 and 3 are performed when attaching a primary or
additional storage account.

Listing 4-11 shows the code that implements these steps in Azure
Synapse Analytics. The same code can be found inside the file
synapse_configure_polybase.sql in the companion content. As a side note,

https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-configure-azure-blob-storage?view=sql-server-ver15

remember that if your SQL pool is paused, you have to resume it in order to
be able to submit any commands to it.

Listing 4-11 Configuring PolyBase in Azure Synapse Analytics
Click here to view code image
-- 1. Create a Master Key
CREATE MASTER KEY ENCRYPTION BY PASSWORD ='<strong_password_here>';
-- 2. Create a database scoped credential
CREATE DATABASE SCOPED CREDENTIAL dp900sablobCredential
WITH
 IDENTITY = 'user',
 SECRET = '<storage_account_access_key_here>';
-- 3. Create an external data source
CREATE EXTERNAL DATA SOURCE dp900sablob WITH (
 TYPE = HADOOP,
 LOCATION =
'wasbs://<container_name_here>@<storage_account_name_here>.blob.cor
e.
windows.net',
 CREDENTIAL = dp900sablobCredential
);
-- 4. Create an external file format
CREATE EXTERNAL FILE FORMAT CsvFileFormat WITH (
 FORMAT_TYPE = DELIMITEDTEXT,
 FORMAT_OPTIONS (FIELD_TERMINATOR = ',', STRING_DELIMITER =
'0x22', FIRST_ROW = 2, USE_
TYPE_DEFAULT = TRUE)
);

Next, you must create the external tables that point to the source files.
The external table that maps the destination folder will be created in the
next step.

Listing 4-12 shows an example of external table creation. The full code
can be found inside the file synapse_create_database_objects.sql in the
companion content.

Listing 4-12 Creating an external table in Azure Synapse Analytics
Click here to view code image
CREATE EXTERNAL TABLE dbo.SalesLT_ProductModel (
 ProductModelID INT,

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch04_images.xhtml#p04lis011a
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch04_images.xhtml#p04lis012a

 [Name] NVARCHAR(255),
 rowguid NVARCHAR(255),
 ModifiedDate NVARCHAR(255)
)
WITH (
 LOCATION = '/extract/azuresql/SalesLT_ProductModel/',
 DATA_SOURCE = dp900sablob,
 FILE_FORMAT = CsvFileFormat
);

The WITH clause contains all the information needed to correctly read the
file: where it is (LOCATION), how to access it (DATA_SOURCE), and how to
interpret its content (FILE_FORMAT).

In the last step, we transform the data and, at the same time, write it to
the destination folder creating and using an external table. To do so, we
leverage the CREATE EXTERNAL TABLE AS SELECT (CETAS) syntax, as shown in
Listing 4-13. The full code can be found inside the file
synapse_transform_data.sql in the companion content.

Need More Review? CETAS

Additional information about the CREATE EXTERNAL TABLE AS
SELECT statement can be found here:
https://docs.microsoft.com/en-us/azure/synapse-
analytics/sql/develop-tables-cetas.

Listing 4-13 Writing to blob storage in Azure Synapse Analytics
Click here to view code image
CREATE EXTERNAL TABLE dbo.SalesLT_ProductsInfo
WITH (
 LOCATION = '/transform/synapse/products_info/',
 DATA_SOURCE = dp900sablob,
 FILE_FORMAT = CsvFileFormat
)
AS

https://docs.microsoft.com/en-us/azure/synapse-analytics/sql/develop-tables-cetas
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch04_images.xhtml#p04lis013a

SELECT
 p.ProductID,
 p.Name,
 p.ProductNumber,
 p.Color,
 p.StandardCost,
 p.ListPrice,
 p.Size,
 p.Weight,
 pm.ProductModelID,
 pm.Name AS ProductModelName,
 psc.ProductCategoryID AS ProductSubcategoryID,
 psc.Name AS ProductSubcategoryName,
 pc.ProductCategoryID,
 pc.Name AS ProductCategoryName
FROM SalesLT_Product AS p
INNER JOIN SalesLT_ProductModel AS pm ON p.ProductModelID =
pm.ProductModelID
INNER JOIN SalesLT_ProductCategory AS psc ON p.ProductCategoryID =
psc.ProductCategoryID
INNER JOIN SalesLT_ProductCategory AS pc ON
psc.ParentProductCategoryID =
pc.ProductCategoryID;

The output file is split into multiple chunks, and column names are
maintained in the process, as shown in Figure 4-33. This is the same
behavior as Spark.

Figure 4-33 The content of the products_info directory

Azure Data Factory mapping data flows
Microsoft introduced mapping data flows in October 2019 to provide a
visual transformation design experience in Azure Data Factory (ADF).

Need More Review? Mapping data flows overview

A complete overview of mapping data flows can be found here:
https://docs.microsoft.com/en-us/azure/data-factory/concepts-

https://docs.microsoft.com/en-us/azure/data-factory/concepts-data-flow-overview

data-flow-overview.

As we said earlier in the section about ADF, mapping data flows
translate each activity on the design canvas to Spark code, which is then
submitted to an on-demand Azure managed Databricks cluster in pay-per-
use mode. You do not pay for the full cluster infrastructure and compute
time, though—just for the effective Databricks Units (DBUs) consumed.

 Exam Tip

Mapping data flows are not to be confused with wrangling data flows,
which currently are in public preview.

Wrangling data flows offer a visual design experience based on Power
Query language (the M language) and integrate with Power Query
Online service. They are helpful for Power BI and Excel Power Pivot
users, who can find in them a familiar interface.

The mapping data flows feature does not offer the same choice of data
store connectors as other activities. In fact, they are executed on Azure
Databricks and they can use only connectors and file formats currently
supported by that engine.

Mapping data flows have their own section in the ADF authoring portal
(to reach it, go to the ADF resource page in the Azure portal, Overview
section, click Author & Monitor, and click the pencil icon in the left-hand
menu). To create one, you just click the ellipsis (…) next to the Data Flows
folder in the Factory Resources menu and select New Mapping Dataflow,
as shown in Figure 4-34.

https://docs.microsoft.com/en-us/azure/data-factory/concepts-data-flow-overview

Figure 4-34 Selecting New Mapping Dataflow

In a similar way to data flows in SQL Server Integration Services
packages, in the authoring canvas you can add sources, transformations,
and sinks. Traditional pipeline activities, sources, and skinks can use data
sets to map the data on the data stores, with the only difference being that
only supported data set types are shown (or can be created).

Figure 4-35 shows a source pointing to the SalesLT_ProductModel.txt
file on the canvas. In the bottom panel, you have six tabs:

Source Settings On this tab you can configure basic settings for the
source, including its name in the workflow, the underlying data set,
whether to permit or reject changes in the schema on subsequent runs
(called schema drift), and so on.
Source Options On this tab you can set additional options related to
the type of source data set, such as overriding the path with wildcards,
specifying whether not having files to read during a run is allowed,
and a specific after-completion action such as moving or deleting the
source file.

Projection Here you can change the data type of the columns. These
data types are what the downstream transformations and destinations
will see.
Optimize On this tab you can change the partitioning strategy:
whether to use the original one, a single partition (like the coalesce
example in the Azure Databricks section), or a more complex schema.
Inspect On this tab you have a clear view of the metadata of your data
source, like column names, order, and types.
Data Preview Here you can see a preview of the content of your
source. To be able to do so, you must select Data Flow Debug in the
top bar, which warms up a lightweight cluster to test the data flow.
When the cluster is ready, a green light icon is shown next to this tab
and next to the Data Flow Debug toggle button.

Figure 4-35 The source configuration panel

Need More Review? Source configuration options

For detailed information about the source configuration panel, go
here: https://docs.microsoft.com/en-us/azure/data-
factory/concepts-data-flow-overview#configuration-panel.

https://docs.microsoft.com/en-us/azure/data-factory/concepts-data-flow-overview#configuration-panel

To add other sources, click Add Source on the canvas and set things up.
A click on the plus (+) sign in the bottom-right corner of the source

opens a small panel where you can add a transformation or a sink node to
the workflow graph. Transformations are divided into three categories:

Multiple inputs/outputs Contains those transformations that involve
multiple nodes, like Join and Union
Schema modifier Contains those transformations that modify the
input schema, such as Select, Aggregate, Derived Column, and
Pivot/Unpivot
Row modifier Contains those transformations that modify the rows in
some way, such as Sort and Filter

Need More Review? Available transformations

To explore all the available transformations, go here:
https://docs.microsoft.com/en-us/azure/data-factory/data-flow-
transformation-overview.

 Exam Tip

Mapping data flows have their own expression language for data
transformation. Some functions are available only in their related
transformations, like, for example, the rowNumber function that is
specific to window transformations. The complete list can be found
here: https://docs.microsoft.com/en-us/azure/data-factory/data-flow-
expression-functions.

https://docs.microsoft.com/en-us/azure/data-factory/data-flow-transformation-overview
https://docs.microsoft.com/en-us/azure/data-factory/data-flow-expression-functions

To complete the workflow, you must add some cascade Join
transformations (since you can join just two streams at a time), a Select
transformation (to select and rename columns), and a Sink transformation.
Figure 4-36 shows the complete graph of the workflow.

Our familiar sources are on the left: ProductModel, ProductCategory,
ProductSubcategory (this is the “duplicate” reference to the
SalesLT_ProductCategory file), and Product. They are joined in subsequent
steps, and the mapping data flows feature uses reference nodes, which are
small boxes that just repeat the name of the other side of the transformation
(in this case, they are a placeholder for the right side of the Join
transformation) to make the canvas clearer and avoid crossing connection
arrows. After all the joins take place, a Select transformation picks just the
columns that have to be included in the output and renames them if needed.
The Sink transformation instructs the data flow on how the extraction file
has to be formatted, where it has to be placed, and so on.

Figure 4-36 The complete graph of the transformation

Figure 4-37 displays the Settings tab of the Sink configuration option.
The engine will clear the destination folder before writing the output
records and will produce just one file with the name products_info.txt. Note
that to produce a single output file, you have to select Single Partition on
the Optimize tab; otherwise, the data flow cannot be validated. In fact, you
need to tell Spark to reduce to one the number of chunks prior to writing to
the destination, and you can do this only by narrowing down the number of
the partitions the DataFrame is divided into.

Figure 4-37 The Settings tab of the Sink transformation

The produced file (shown in Figure 4-38) is similar to the output of the
previous data processing engine, with the exception of the column ordering.
If a specific column ordering is mandatory, you must arrange the columns
in the Select Settings tab of the Select transformation accordingly (leaving
the Auto Mapping option unselected).

Figure 4-38 The content of the products_info.txt file

Need More Review? Mapping data flows performance and
tuning guide

You can use mapping data flows to produce complex workflows
easily and with a code-free approach. Despite that, however, it
may not be straightforward to optimize them since you have to
think “the Spark way” when setting the various options. You will
find a good starting point here: https://docs.microsoft.com/en-
us/azure/data-factory/concepts-data-flow-performance.

https://docs.microsoft.com/en-us/azure/data-factory/concepts-data-flow-performance

Describe common practices for data loading
The final target of a batch workload in a modern data warehouse scenario is
typically a high-performance data warehouse, capable of storing huge
volumes of data in a scalable way and accessing that data rapidly. In Azure,
this usually translates to Azure Synapse Analytics.

You should be familiar with Azure Synapse Analytics from this and
previous chapters; its architecture, its typical uses, and how to use PolyBase
to load data into Azure Synapse Analytics. PolyBase is central not only for
data transformation, but also for the L part of an ETL/ELT process, the
Load phase.

 Exam Tip

Features in private or public preview are not part of certification
exams. However, it is important to stress that the capabilities of Azure
Synapse Analytics are changing.

The COPY statement, currently in public preview, allows for a fresh and
easier approach to moving data in and out of Azure Synapse Analytics.
Read more here: https://docs.microsoft.com/en-us/sql/t-
sql/statements/copy-into-transact-sql?view=azure-sqldw-latest.

Follow these steps to load data into Azure Synapse Analytics:

1. Set up PolyBase.
2. Map your data source to an external table.
3. Load the data.

https://docs.microsoft.com/en-us/sql/t-sql/statements/copy-into-transact-sql?view=azure-sqldw-latest

The difference here is that the target table resides in the database and is
not an external table itself, and this aspect brings up some important points.
For example, we do not recommend that you load data directly to the final
table, but instead use a staging table that acts as a bridge. The final table
usually has a physical structure that is well suited for retrieving data fast
(for example, it has one or more indexes), and not for inserting data.

Loading data to a table with no indexes (technically called a “heap”) is a
well-known best practice in data warehousing, because it is an effective
way to increase data transfer efficiency.

Keep in mind that decoupling the external sources from your engine
should be a high priority. Transformations can be performed on the staging
table, and when you are done, if necessary, you can change its physical
form to mimic the one of the destination table. For example, this can be
done by using techniques like partition switching, when applicable, or
approaching the transfer of the data in the best way (as a side note, if you
use a partition switching pattern, it can be that your staging table was
already partition-aligned with your destination at the time of insertion and
not a heap).

 Exam Tip

Tools or programmatic approaches like bcp and SqlBulkCopy API can
still be used to load the data into Azure Synapse Analytics. They are
slower than PolyBase or the COPY command, though, and for this
reason they are not the preferred way.

In the sub-section titled “Azure Synapse Analytics” under the section
“Describe data processing options (e.g., Azure HDInsight, Azure
Databricks, Azure Synapse Analytics, Azure Data Factory),” we used the
CREATE EXTERNAL TABLE AS SELECT (CETAS) statement to create the output
mapping table as rapidly as possible. In a similar way, the creation of the
local staging table should always be done using the CREATE TABLE AS

SELECT (CTAS) statement, which is a parallel operation that creates and fills
the table from the output of a SELECT with a single command.

Need More Review? CTAS

To know more about the CREATE TABLE AS SELECT statement, go
here: https://docs.microsoft.com/en-us/azure/synapse-
analytics/sql-data-warehouse/sql-data-warehouse-develop-ctas.

The Copy activity in ADF pipelines and the Sink transformation in ADF
Mapping Data Flows make it easy to leverage PolyBase when using Azure
Synapse Analytics as a sink. All you have to do is to select the Enable
Staging property in the activity setting and specify a storage account that
will hold the data mapped by the external table.

 Exam Tip

Azure Databricks have an optimized connector for Azure Synapse
Analytics, too. A detailed post can be found in the documentation:
https://docs.databricks.com/data/data-sources/azure/synapse-
analytics.html.

Another important aspect is the elasticity of the service: taking
advantage of the ability of Azure Synapse Analytics to scale out can help in
achieving the best performance possible and, at the same time, keep the
costs reasonable. It is common to increase the compute firepower just for
the time frame of the load and transform phases, decreasing it afterward.

https://docs.microsoft.com/en-us/azure/synapse-analytics/sql-data-warehouse/sql-data-warehouse-develop-ctas
https://docs.databricks.com/data/data-sources/azure/synapse-analytics.html

Need More Review? Data loading strategies for Synapse
SQL pool

A detailed overview of the data loading patterns and best
practices for Azure Synapse Analytics can be found here:
https://docs.microsoft.com/en-us/azure/synapse-analytics/sql-
data-warehouse/design-elt-data-loading.

Skill 4.4: Describe data visualization in
Microsoft Power BI
At first glance, you may think of Power BI as a data visualization tool. And
it is indeed, but that is just the tip of the iceberg.

Nowadays, Power BI covers almost the entire business intelligence (BI)
lifecycle. You can discover, collect, cleanse, model, and visualize your data
with (and within) it. In addition, you can use many AI-related features to
get insights from your data and integrate machine learning capabilities into
your reports with a no-code approach.

In modern data warehouse scenarios, it is important to have a flexible
way to transform and visualize data since users may need to access not only
curated data sets, but also raw or semi-finished data sets. In fact,
experimentation fits perfectly in such scenarios. Citizen developers must be
able to discover and explore data sources, mesh them together, and model
them to determine whether they can add value to their business—all of this,
if possible, without any (or very little) help from the IT department to avoid
bottlenecks. If data turns out to be valuable, it can be integrated in the
enterprise data warehouse undergoing all the needed processing and quality
checks of the other data pipelines already in place.

Power BI helps in this task, reducing the distance between users and
data.

https://docs.microsoft.com/en-us/azure/synapse-analytics/sql-data-warehouse/design-elt-data-loading

This skill covers how to:
Describe the workflow in Power BI
Describe the role of interactive reports
Describe the role of dashboards
Describe the role of paginated reporting

Describe the workflow in Power BI
The typical workflow in Power BI consists of the following steps:

1. Get data
2. Cleanse and/or transform data
3. Model data
4. Build a report
5. Publish the report
6. Compose a dashboard

Although they follow the same conceptual workflow, to build interactive
and paginated reports you have to take different approaches, which are
described in the proper sections. You will see that paginated reports have
limited capabilities in almost every aspect. For example, you do not have
the data transformation capabilities that you have in interactive reports,
making paginated reports more suitable for traditional visualization of data
rather than for its interactive exploration.

Interactive reports are the core of Power BI, and seeing them in detail
can help you discover more about the whole workflow and the environment
the service is built upon.

 Exam Tip

Power BI has a tight and agile development cycle, with major updates
released on a monthly basis. To stay informed about the state-of-the-art
of the service and know in advance what features will be added in the
coming months, check the Power BI Blog regularly:
https://powerbi.microsoft.com/en-us/blog/.

Describe the role of interactive reports
If we draw a parallel with a newspaper, an interactive report can be seen as
an article full of infographics and fancy visualizations, but with a great plus:
interactivity. In fact, as the name suggests, interactive reports enable users
to interact with their visuals, charts, and filters, and their role is to focus the
attention of the viewer on specific trends or situations.

The preferred tool for authoring a report of this type is Power BI
Desktop, which is completely free.

 Exam Tip

You can download Power BI Desktop here:
https://powerbi.microsoft.com/en-us/downloads/.

If the version of your operating system supports it, you can also get it
from the Windows App Store: www.microsoft.com/en-us/p/power-bi-
desktop/9ntxr16hnw1t.

Both versions have the same functionality, but the latter has an auto-
update feature like all the other apps. On the other hand, the desktop

https://powerbi.microsoft.com/en-us/blog/
https://powerbi.microsoft.com/en-us/downloads/
http://www.microsoft.com/en-us/p/power-bi-desktop/9ntxr16hnw1t

version allows for downloading a previous version for compatibility
reasons.

In addition, if you plan to publish your reports on-premises in Power
BI Report Server (more on that later), you have to use a slightly
different version of Power BI Desktop, which is available only for the
desktop and can be downloaded here: www.microsoft.com/en-
us/download/details.aspx?id=56722.

After Power BI Desktop starts, it asks you for a Power BI account. You
can skip this step if you do not plan to publish your report to the online
service and just use the product to experiment with data and visualizations
(or create reports you want to keep locally).

Power BI Desktop works with PBIX files, which are archives that
include data sources information, data models, and report definitions. You
can also create PBIT files, which are report templates that others can use as
a starting point when authoring new reports.

Figure 4-39 shows a blank report in Power BI Desktop. The interface is
Office-like, with contextual ribbons that make up the top bar. The left-hand
menu contains three icons that can be used to switch among the editing
views:

Report Here you can build your interactive report. You have three
collapsible panels on the right, which allow for handling filters,
visualizations, and the fields of your data model to be included in the
report.
Data Here you can add, edit, or remove your data sources.
Model Here you can build your data model, which is basically where
you relate the different sources of your report together, create
computed columns and custom measures, and so on.

Need More Review? Model data in Power BI

http://www.microsoft.com/en-us/download/details.aspx?id=56722

Data modeling is a wide topic and is not covered in this book.
Under the hood, Power BI uses the Analysis Services Tabular in-
memory engine for data models, inheriting all the enterprise-class
features available in SQL Server (on-premises) and on Azure (as
a PaaS service), such as high-ratio data compression, fast
performance for data retrieval and calculations, full DAX
semantic, and more. You can extend your knowledge about this
topic with the following module, which is part of the learning
path “Create and use analytics reports with Power BI”:
https://docs.microsoft.com/en-us/learn/modules/model-data-
power-bi/.

At the bottom, you can see a tab with a “Page 1” label and a plus sign
next to it. Interactive reports can have multiple pages, but do not confuse
this with the classical “paging” used to handle overflowing or out-of-page
content. In this case, pages are a way to better organize your content,
allowing you to assign different looks for topics. There is no “overflow”
concept in this kind of report, and the content always tries to fit the actual
view as best as possible. Visuals like Table and Matrix are meant for small
number of rows and columns and Paginated Reports is for displaying
tabular-form data.

https://docs.microsoft.com/en-us/learn/modules/model-data-power-bi/

Figure 4-39 A blank report in the Power BI Desktop application

The top bar includes a Get Data button that, when clicked, leads to the
first step of the workflow introduced earlier. It opens a modal selection
window, displayed in Figure 4-40.

Power BI offers many connectors out of the box, making it easy to get
data from various sources and services. You have the following categories
to choose from:

File This category contains typical file sources, like Excel, JSON,
CSV, and so on.
Database This category contains the most popular databases on the
market, like SQL Server, Oracle, MySQL, SAP HANA, Snowflake,

Teradata, Google BigQuery, Amazon Redshift, and more.
Power Platform This category contains connectors related to the
Power Platform ecosystem (which Power BI is part of), like Power BI
data sets and dataflows, and Common Data Services.
Azure This category contains the most popular services on Azure, like
Azure SQL Server, Azure Analysis Services, Azure Synapse
Analytics, Azure Storage, Azure HDInsight (only HDFS and Spark
are supported), Azure Databricks, and more.
Online services This category contains connectors to SaaS services
from Microsoft and other vendors, like Microsoft Exchange Online,
Dynamics 365, Salesforce Reports, Google Analytics, Adobe
Analytics, Smartsheet, and more.
Other This category contains connectors that do not fall into other
categories, like generic ones such as ODBC and OLEDB, or more
specific ones, like OData feeds, R or Python scripts, and on-premises
Spark deployment.

Figure 4-40 The Get Data window

Each connector can require additional information, such as the
credentials to connect to the data store. Also, depending on the type of
source, Power BI may ask you how you want to connect to it or, in other
words, whether the source data should be imported and stored in-memory

or be read dynamically. This is the Data Connectivity mode, and it can be
one of three types:

Import mode Data resides in memory, and when the model is closed
it is off-loaded to disk inside the PBIX itself. You can refresh the data
set to get updated data from the source.
DirectQuery Data is not cached in memory. When Power BI submits
a query to the data set (for example, you have a visual that shows data
from it), the request gets translated into the native language of the data
source and routed to it.
Live connection Data is not cached in memory, as in DirectQuery
mode, but this type of connection is supported only by those
connectors that rely on the same engine of Power BI and understand
its query language (for example, Azure Analysis Services or its on-
premises counterpart). If supported, it is generally more efficient than
DirectQuery since queries use the same native language and do not
need to be translated.

When the Get Data operation is completed, a table is created inside the
model. The Data Connectivity mode also determines the storage mode of
the table, which you can change later from the Data view.

 Exam Tip

Some conditions may prevent you from changing the storage mode for
a table. Also, a table that uses a DirectQuery storage mode can be set
to Dual. Dual tables can act as either cached or not cached, depending
on the context of the query that is submitted to the data set. You can
read more here: https://docs.microsoft.com/en-us/power-bi/transform-
model/desktop-storage-mode.

Power BI allows you to have mixed storage modes inside a data model.
In this way, you can take the best from each kind of source, letting the

https://docs.microsoft.com/en-us/power-bi/transform-model/desktop-storage-mode

engine handle how data must be queried. These types of data models are
called composite models.

 Exam Tip

Not every combination is permitted, especially when you have a
Connectivity mode of type Live Connection in your data model. Read
more here: https://docs.microsoft.com/en-us/power-bi/transform-
model/desktop-composite-models.

If you select Azure SQL Database and import
SalesLT.SalesOrderHeader and SalesLT.SalesOrderDetail from the
DP900_1 database from Chapter 2, for example, the Model view now
contains two tables (see Figure 4-41). Power BI already proposes a one-to-
many relationship between the two based on the table field names, which is
correct. At the bottom, a tab selector allows for creating additional tabs
containing different subsets of tables, as you can do when creating database
diagrams in SQL Server Management Studio. The current tab is labeled All
Tables.

https://docs.microsoft.com/en-us/power-bi/transform-model/desktop-composite-models

Figure 4-41 The Model view

The Data view proposes the same tables (one at time) with a different
look, focusing on the data contained inside them. As you can see in Figure
4-42, the central canvas is now a grid view that shows the table columns,
rows, and cell data. Rows can be sorted by columns and filtered, allowing
for a quick exploration of the data available. Two contextual ribbons at the
top, Table Tools and Column Tools, contain common transformation
actions like New Column, New Measure, Change Data Type And Display
Format, and so on.

The right-hand tab contains a list view, where you can expand or
collapse each table to see its fields. Figure 4-42 shows the fields for the

SalesLT SalesOrderHeader table, and in some cases before their name there
is an icon of one of two different types:

Auto-sum icon This is generally related to numeric fields. It indicates
that Power BI will apply the summarization defined in the properties
when this field is displayed through a visual in a report. It is a good
practice to check every field with auto-summarization enabled to see
if it makes sense. In Figure 4-42, for example, this feature could be
turned off for the field CustomerID. Available aggregations include
the following:

Sum
Average
Min
Max
Count
Count (Distinct)

Calendar icon This is related to Date and Time data types and
indicates that these fields can be used to leverage time-intelligence
capabilities of the DAX language, using functions like Year-To-Date,
Year-Over-Year, and more. A date hierarchy is added automatically by
Power BI, breaking the field into four parts: Year, Quarter, Month, and
Day (see the Due Date field, which has been expanded in Figure 4-
42).

Figure 4-42 The Data view

Quick transformation actions in the top bar can be useful for applying
small changes to the model, but Power Query Editor offers the full
transformation experience. You can access the editor in a couple of ways:
clicking the icon in the Home ribbon, or right-clicking one of the tables and
selecting Edit Query.

Keep in mind that you do not change the table directly but instead stack
transformation steps over the original query to obtain the desired output (in

some way, this is similar to how you apply transformations to a Spark
DataFrame, as you learned in Skill 4.3).

The majority of these transformations do not require you to write code
and can be designed in the editor in a visual way. You can write Power
Query code directly in the Advanced Editor panel. This enables you to use
those transformations not yet supported or to set parameters not exposed in
the UI.

Figure 4-43 shows the Power Query Editor. In the left-hand panel, the
table SalesLT SalesOrderHeader is selected. The central canvas contains a
grid view that is similar to the one already shown in the Data view, but in
this one an icon on the column headers indicates the data type for each
column (they are inferred by Power BI when creating the table, but then
you can change them). The right-hand panel lists all the transformation
steps applied so far. In this specific example, four have been applied:

1. Source The data store is reached.
2. Navigation The specific table is selected.
3. Removed Columns Unused columns are removed.
4. Extracted Date Some Date/Time fields are converted to straight

Date columns, removing the Time portion.

The top menu contains numerous applicable transformations, from
common ones like add, remove, and rename column, to more specific ones
like executing Python or R scripts and invoking Azure Cognitive Services
to leverage AI on your data set. For example, you can ask a published Text
Analytics web service to do term extraction on a free-text field of your
table.

Figure 4-43 The Power Query Editor

Listing 4-14 shows the resulting Power Query code that has been auto-
generated by the editor; you can edit this code in the Advanced Editor
window.

Listing 4-14 Power Query auto-generated code that applies the described
transformations
Click here to view code image
let
 Source = Sql.Databases("dp900sqlserver.database.windows.net"),
 DP900_1 = Source{[Name="DP900_1"]}[Data],
 SalesLT_SalesOrderHeader =
DP900_1{[Schema="SalesLT",Item="SalesOrderHeader"]}[Data],
 #"Removed Columns" =
Table.RemoveColumns(SalesLT_SalesOrderHeader,{"RevisionNumber",
"ShipToAddressID", "BillToAddressID", "CreditCardApprovalCode",
"Comment", "rowguid",
"SalesLT.Address(BillToAddressID)",
"SalesLT.Address(ShipToAddressID)",
 "SalesLT.Customer", "SalesLT.SalesOrderDetail", "ModifiedDate",
"Status"})
in
 #"Removed Columns"

When you are done, click the Close & Apply button in the top bar to
confirm the changes to the query and to make Power BI refresh the data.

Now, to make the scenario a bit more complex, add two tables:
The SalesLT_Customer.txt file created in the practice “Use the Copy
Data Wizard to create and run a simple pipeline”
The products_info.txt file created with mapping data flows in the
section “Describe data processing options (e.g., Azure HDInsight,
Azure Databricks, Azure Synapse Analytics, Azure Data Factory)”

Go through the Get Data procedure again, but this time choose Azure
Blob Storage as the source. Figure 4-44 shows the updated Model view.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch04_images.xhtml#p04lis014a

Figure 4-44 The updated Model view

As you can see, both SalesLT Customer and Products Info tables have
relationships (inferred by the engine) with the two tables imported earlier,
SalesLT SalesOrderHeader and SalesLT SalesOrderDetails, respectively.

Listing 4-15 shows the Power Query code to import the SalesLT
Customer table, which is conceptually similar to the code in Listing 4-14.
Of course, the Source and Navigation steps are different (and a little more
articulated) than before since they now point to a different data store.

Listing 4-15 Power Query auto-generated code that applies the described
transformations
Click here to view code image
Let
 Source =
AzureStorage.Blobs("https://dp900sablob.blob.core.windows.net"),
 companyblobs1 = Source{[Name="companyblobs"]}[Data],
 #https://dp900sablob blob core windows
net/companyblobs/_extract/azuresql/SalesLT_
Customer txt
 = companyblobs1{[
 #"Folder
Path"="https://dp900sablob.blob.core.windows.net/companyblobs/",
 Name="extract/azuresql/SalesLT_Customer.txt"]
 }[Content],
 #"Imported CSV" = Csv.Document(
 #"https://dp900sablob blob core windows
net/companyblobs/_extract/azuresql/SalesLT_
Customer txt",
 [
 Delimiter=",",
 Columns=15,
 Encoding=1252,
 QuoteStyle=QuoteStyle.None
]),
 #"Promoted Headers" = Table.PromoteHeaders(#"Imported CSV",
[PromoteAllScalars=true]),
 #"Changed Type" = Table.TransformColumnTypes(
 #"Promoted Headers",
 {
 {"CustomerID", Int64.Type}, {"NameStyle", type logical},
{"Title", type text},
 {"FirstName", type text}, {"MiddleName", type text},
{"LastName", type text},
 {"Suffix", type text}, {"CompanyName", type text},
{"SalesPerson", type text},
 {"EmailAddress", type text}, {"Phone", type text},
{"PasswordHash", type text},
 {"PasswordSalt", type text}, {"rowguid", type text},
{"ModifiedDate", type
datetime}
 }),
 #"Removed Columns" = Table.RemoveColumns(

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch04_images.xhtml#p04lis015a

 #"Changed Type",
 {
 "SalesPerson", "EmailAddress", "Phone", "PasswordHash",
 "PasswordSalt", "rowguid", "ModifiedDate"
 })
in
 #"Removed Columns"

Need More Review? Get data and model it

The following modules from the learning path “Create and use
analytics reports with Power BI” are a good starting point for
working with data in Power BI: Get data with Power BI Desktop:
https://docs.microsoft.com/en-us/learn/modules/get-data-power-
bi/.

Model data in Power BI: https://docs.microsoft.com/en-
us/learn/modules/model-data-power-bi/.

So far, we have briefly introduced how to approach the get, transform,
and model data steps for an interactive report. Now that you have some data
ready, you can switch to the Report view and drag some visuals to build a
simple report.

Need More Review? Data visualization

Basic types of visuals are described in the section “Describe data
visualization and basic chart types” in Skill 1.2.

For example, suppose that you want to display the total ordered quantity
by product category for orders in the year 2008. To produce the output

https://docs.microsoft.com/en-us/learn/modules/get-data-power-bi/
https://docs.microsoft.com/en-us/learn/modules/model-data-power-bi/

shown in Figure 4-45, you have to follow these steps:

1. Choose a visual Opt for a stacked bar chart since that makes it
easier to see at first glance the differences of ordered quantity
between categories. Other good options are the stacked column
chart, the clustered bar chart, and the clustered column chart.

2. Drag the required fields Pick the ProductCategoryName field
from the Products Info table and set it as the axis for the visual.
Then, pick the OrderQty field from the SalesLT SalesOrderDetail
table and set it as Values for the visual.

3. Set the filter You can place “Year is 2008” in the visual, page, or
report level. In this case opt for the latter so that all visuals on all
pages honor it. To do so, select the Year level from the auto-
generated hierarchy on the OrderDate field from the SalesLT
SalesOrderHeader table. Obviously, it is possible to also have filters
controlled by users placing the Slicer visual on the canvas and
picking a field or a hierarchy for it.

4. Format the visual Optionally, it is possible to change how the
visual looks. In this case, increase the font to 20pt and remove the
title for both axes.

Figure 4-45 The Report view with a stacked bar chart in it

A few things to note in Figure 4-45:
The visual auto-adapted its size to the available space. If you collapse
one or all of the right-hand panels, it grows horizontally and vertically,

maintaining the same aspect ratio.
The report is already “interactive,” while still in edit mode. As shown
in the figure, when you hover the mouse over one of the bars, the
default tooltip for the visual (which, in this case, specifies the category
you are in and the exact amount of OrderQty) appears.
The field OrderQty has been aggregated using the function specified
in its auto-summarization property; in this case it is Sum.
You can change the visual at any time by simply clicking a different
one in the Visualizations panel while having the focus on the one you
want to modify. Power BI tries to rearrange the actual fields and
measures to the new visual, and it proposes the best possible
combination. This comes in handy when you want to compare how
different visuals would look for the same data when authoring a
report.

Note DP900.pbix

You can find the full report in the companion content under the
name DP900.pbix. Just be sure to change the queries to make
them point to the resources you provisioned in the previous
practices.

The source text files SalesLT_<tablename>.txt and
products_info.txt are also included for convenience in the
companion content under the folder sample_data.

Figure 4-46 shows a more complex example. The report now has a
second page, named LineTotal breakdown, on which there are the following
visuals:

Two card visuals that displays the total amount for the LineTotal and
OrderQty fields.

A clustered column chart that displays the breakdown by product
subcategory and model for the LineTotal field. The tooltip also
contains the OrderQty amount.
A slicer that shows the Top 10 companies by LineTotal. To do so, a
filter of type Top N has been chosen at the visual level.
A slicer that shows the product categories.

The visuals interact with each other when you click them, allowing for a
quick exploration of the data. For example, in the figure you can see that
just two companies and one category are selected in the slicers; the two
cards and the clustered column chart visuals automatically refresh
themselves to reflect the selection made by the user.

Figure 4-46 The Report view on the LineTotal breakdown page

Need More Review? Use visuals in Power BI

The following module from the learning path “Create and use
analytics reports with Power BI” contains many useful
information and tips about visuals: https://docs.microsoft.com/en-
us/learn/modules/visuals-in-power-bi/.

Now that you have a simple report, you may want to make it more
accessible than a file saved on a local or network drive. To do so, you have
to publish it to the Power BI service, which is a fully managed, multitenant,
SaaS platform that you can use as an organizational repository for your
reports and your models. You can navigate published reports both through
the service itself and through the mobile app. The Power BI mobile app is
available for Windows, Android, and iOS devices. To be able to publish the
report, you have to log in to the service first, or register if you do not have
an account yet. You can use the same account you are using for accessing
the Azure portal.

The Power BI service is organized into workspaces. Every user has a
personal workspace, in which authored reports can be published.
Depending on the type of license the user has (Free or Pro) and the Power
BI plan applied to the workspace (Shared or Premium capacity), the user is
able to share the report with others and publish it to other accessible
workspaces.

Need More Review? Power BI plans

Licensing in Power BI is not covered in this book. You can refer
to the following page to learn more about the available plans and
what features they include: https://powerbi.microsoft.com/en-
us/pricing/.

https://docs.microsoft.com/en-us/learn/modules/visuals-in-power-bi/
https://powerbi.microsoft.com/en-us/pricing/

When you publish a report, behind the scenes you are publishing its
building blocks and not the report as a whole. In fact, every workspace has
different sections for reports, data sets, and more. For example, you can
build a report that connects to a published data set, using the connections
and the transformations already defined in it. Indeed, it is a good
development practice to have separate PBIX files for data models (in which
you just connect to the sources, prepare your data sets, and compose your
model) and for visualizations (in which you have the report pages, visuals,
filters, and so on), since it resembles the traditional BI projects structure
and decouples modeling and reporting phases.

 Exam Tip

If your data sources are not publicly accessible from the Power BI
service, you may need to install and configure the Power BI Gateway
application on a machine in the same network perimeter as the source.
Find more information here: https://powerbi.microsoft.com/en-
us/gateway/.

Figure 4-47 shows the home page of a workspace that contains the
DP900 report. The left-hand menu is divided into two sections; the top one
includes typical commands like Home, Recent, and Favorites, whereas the
bottom one can be used to navigate through the workspace the user can
access. The workspace “DP-900 Exam ref” is selected, and the central
panel lists all the available contents in it—currently just two items: the
published report and the underlying data set.

https://powerbi.microsoft.com/en-us/gateway/

Figure 4-47 The Power BI Service portal

If you click the report, Power BI open it in the central pane, and you can
see that its rendering is similar to Power BI Desktop application.

Figure 4-48 shows the result. You can see that the left-hand menu has
been collapsed to leave more space for the report. The report page selection
tabs are no longer at the bottom; instead, they are now to the left of the

report. You can toggle this panel by using the Page menu item in the top
bar. Of the three right-hand panels (Filters, Visualizations, and Fields), just
Filters is still there. This is called the “reading view,” and users cannot edit
the report layout from here. Users who have the right permissions can edit
the report in the portal directly by accessing the Edit view from the File
menu.

In addition to the File and Page items, the top bar contains commands
that allow for exporting the report, sharing it with other Power BI accounts,
and marking it as a Favorite. In addition, there are useful collaborative
features like adding comments to it via Microsoft Teams or a built-in chat
system.

Figure 4-48 The reading view

Need More Review? Publish and share in Power BI

The following module from the learning path “Create and use
analytics reports with Power BI” contains a lot of useful

information and tips about publishing a report:
https://docs.microsoft.com/en-us/learn/modules/publish-share-
power-bi/.

In the Power BI service, users can also create dashboards, which are
briefly described in the next section.

Describe the role of dashboards
In the previous section, we compared interactive reports to the articles
inside a newspaper. Following the same analogy, dashboards can be seen as
the front page of the same newspaper. In fact, a front page typically is a
composition of sneak peeks of the most important articles, with a reference
to them (the page number, for example).

Data should “tell a story” to the user through reports (data storytelling),
and a dashboard should display only the highlights of that story, referring to
the reports for a more in-depth exploration of the content. Since a
dashboard is composed of a single page (often called a canvas), designers
have to choose carefully which content to put inside it. Visuals like cards,
key performance indicators (KPIs), and charts with few categories of values
are good candidates to be displayed in a dashboard, since they can show a
trend at a glance and can be easily seen on the smaller screens of mobile
devices. The good news is that, for the same dashboard, you can define two
layouts: landscape, which is aimed at desktop clients and tablet, and
portrait, which is more suited to mobile phones.

Dashboards can be created and managed only by the Power BI service.
The content of a dashboard is displayed inside tiles, which are snapped on
the canvas using a virtual grid (like the icons on the Windows Start Menu).

From the dashboard page, you can add standalone tiles. Currently, those
tiles can one of these five types:

Web content With this tile, you can use an HTML code snippet on
your dashboard, like embedding an application.

https://docs.microsoft.com/en-us/learn/modules/publish-share-power-bi/

Image This tile displays an image given its URL.
Text box This tile can be used to enter rich text in your dashboard.
Video You can embed a video hosted on YouTube or Vimeo.
Streaming dataset This tile points to a streaming data set, which
allows you to create real-time dashboards.

Need More Review? Streaming data sets

If you want to know more about this topic, go here:
https://docs.microsoft.com/en-us/power-bi/connect-data/service-
real-time-streaming.

In addition to standalone tiles, you can add specific objects to a
dashboard by pinning them. To pin a supported object, click the “pin” icon
that appears when you hover your mouse over it (see Figure 4-49).

Figure 4-49 The pin icon on a card visual

You can pin the following objects on a dashboard:
Report visuals A pinned report visual maintains the filters that were
applied to the report at the moment of adding it to the dashboard, and
they cannot be changed without removing the tile and pinning it again.
After a visual has been pinned, it is a good practice to change the title
of the tile to include the filter values, like for example, Total sales,

https://docs.microsoft.com/en-us/power-bi/connect-data/service-real-time-streaming

year 2020, if such filters do not appear explicitly somewhere on the
dashboard (for example, in its title or in a text box tile).
Tiles from another dashboard It can be useful to replicate a tile on
another dashboard without having to pin the source object again.
Excel workbooks You can pin a range of cells or an entire worksheet
from a workbook. The workbook must reside on OneDrive for
Business, and it has to be linked to your workspace in the Workbook
section, which is accessible from the left-hand menu.
Power BI Q&A Power BI Q&A is a powerful service integrated into
the platform that allows you to ask questions in natural language, like
“Top 10 customers by total sales in year 2018.” Currently, only the
English language is supported, and the Spanish language is available
in public preview. If the engine is able to translate your question and
map it to attributes and measures of your data model, it provides you
with a visual tailored to answer your specific question. Then, this
visual can be pinned to a dashboard.
Quick Insights Power BI service can leverage a set of advanced
analytics algorithms to extrapolate information from a data set or from
a dashboard tile. This feature is called Quick Insights, and it
automatically provides you with visuals that highlight specific aspects
of your data that the algorithms have identified as possibly relevant.
Then, you can ask for other insights starting from one of the produced
visuals in order to narrow down the scope. When you find a visual that
you want to keep, you can pin it to a dashboard.
On-premises paginated reports You can pin an item from a
paginated report hosted on SQL Server Reporting Services or Power
BI Report Server. You will learn more about paginated reports in the
following section.

 Exam Tip

Power BI has a rich system for data alerting and notifications. For
selected types of visual on a dashboard, you can get notified when the
underlying value hits a specific threshold. Notifications include push
notifications to the mobile app, email, and so on. To learn about this
service, go here: https://docs.microsoft.com/en-us/power-bi/create-
reports/service-set-data-alerts.

Figure 4-50 shows a simple dashboard that contains four visuals and a
text box tile. The top central text box tile contains information about the
filters applied to the visuals in order to contextualize the values they are
showing. Next to it, at both sides are two cards, which belong to the second
page of the DP900 report. At the bottom are two bigger charts, again from
the DP900 report, one from the first page and the other from the second
page. You can click any visual to be taken to the report directly and start
exploring data.

https://docs.microsoft.com/en-us/power-bi/create-reports/service-set-data-alerts

Figure 4-50 A sample dashboard

Above all those tiles, the Q&A text box is ready to receive questions in
natural language. For example, if you request something like “top 4 product
model names by OrderQty,” Power BI replies with a stacked bar chart (see

Figure 4-51), with the model name on the y-axis (there are four items, as
expected) and OrderQty on the x-axis. If you like, you can pin the tile to
your dashboard, or you can change the question to get a different answer.
You can return to the dashboard by clicking Exit Q&A in the top-left
corner. In the text box at the top, the parts of your question that map to
attributes or measures are underlined in blue.

Need More Review? Explore data in Power BI

The following module from the learning path “Create and use
analytics reports with Power BI” contains a lot of useful
information about dashboards design and uses:
https://docs.microsoft.com/en-us/learn/modules/explore-data-
power-bi/.

https://docs.microsoft.com/en-us/learn/modules/explore-data-power-bi/

Figure 4-51 The Q&A output result

Describe the role of paginated reporting

The paginated report is not a new entry in the Microsoft Business
Intelligence ecosystem. In fact, it is based on the Report Definition
Language (RDL) used for a long time in SQL Server Reporting Services.

As its name implies, a paginated report is ideal for showing tabular and
free-form data, and it is able to display long content by making use of
pagination. A paginated report can be exported to different outputs, such as
webpages, PDF files, and Excel worksheets.

Power BI unifies the two worlds of interactive and paginated reports
because it is able to render both types of reports seamlessly, allowing report
designers to choose the best report type for a specific data set.

 Exam Tip

It is possible to migrate existing SQL Server Reporting Services
reports to the Power BI service as paginated reports with a dedicated
tool. Read more here: https://docs.microsoft.com/en-us/power-
bi/guidance/migrate-ssrs-reports-to-power-bi.

To develop a paginated report, you can use either Visual Studio or
Power BI Report Builder. Power BI Report Builder is a dedicated version
for Power BI of the well-known Report Builder application for Reporting
Services, as you can see in Figure 4-52.

 Exam Tip

You can download Power BI Report Builder here:
www.microsoft.com/en-us/download/details.aspx?id=58158.

Find more information about the tool here:
https://docs.microsoft.com/en-us/power-bi/paginated-reports/report-

https://docs.microsoft.com/en-us/power-bi/guidance/migrate-ssrs-reports-to-power-bi
http://www.microsoft.com/en-us/download/details.aspx?id=58158
https://docs.microsoft.com/en-us/power-bi/paginated-reports/report-builder-power-bi

builder-power-bi.

In Figure 4-52 the Insert tab is selected. It shows the available visuals:
table, matrix, list, chart, gauge, map, data bar, sparkline, and indicator (or
KPI), in addition to the more classical text box, image, line, and rectangle.
You can also encapsulate a subreport to divide complex layouts into smaller
parts and add a header and/or a footer that will be shown at display time on
all resulting pages.

The Report Data window is docked on the left. Here you can add data
sources, data sets, images, and parameters to the report. An important
difference from interactive reports is that with interactive reports, data sets
are not part of the report (in fact, when you publish an interactive report its
data sets go to the proper section of the service), but data set definition is
embedded into a paginated report and is accessible only within it.

https://docs.microsoft.com/en-us/power-bi/paginated-reports/report-builder-power-bi

Figure 4-52 The Power BI Report Builder interface

The central canvas presents an almost blank sheet with just two text
boxes on it: one for the title and one in the footer that uses the built-in field
Execution Time (these fields are default parts of the New Report template,
and you can remove them if not needed). As mentioned earlier, paginated

reports have a free-form layout, and visuals can be positioned without any
particular limitation.
As of this writing, paginated reports support the following data sources:

Azure Analysis Services
Azure SQL Database and
Azure SQL Data Warehouse
SQL Server
SQL Server Analysis Services (both for on-premises SQL Server
Analysis Services and for Power BI Premium data sets)
Oracle
Teradata

You can publish a paginated report to the Power BI service, as long as it
has a Premium capacity, or on-premises, to the Power BI Report Server
application.

Need More Review? Power BI Report Server

To learn more about Power BI Report Server, go here:
https://powerbi.microsoft.com/en-us/report-server/.

Need More Review? Power BI Paginated Reports in a Day
course

You will find a comprehensive free online course here:
https://docs.microsoft.com/en-us/power-bi/learning-
catalog/paginated-reports-online-course.

https://powerbi.microsoft.com/en-us/report-server/
https://docs.microsoft.com/en-us/power-bi/learning-catalog/paginated-reports-online-course

Chapter summary
Azure is a natural ecosystem for a modern data warehouse, since it has
many services that cover every aspect of the required workload.
To do data processing, you can leverage services like Azure
HDInsight, Azure Databricks, Azure Data Factory, and Azure Synapse
Analytics.
Azure HDInsight is a managed cloud distribution of Hadoop
components. It supports many different types of clusters, covering a
wide range of scenarios like streaming, batch workload, data
warehousing, and machine learning.
Azure HDInsight is tightly integrated with distributed storages, like
Hadoop Distributed File System (HDFS) and Azure Storage. This
aspect, combined with the ability to scale out the nodes of the cluster,
make it a very elastic service.
You can use Hive Query Language (HiveQL) against a Hadoop cluster
type in Azure HDInsight to do parallel and massive processing of data
stored on a distributed file system. It has a familiar syntax for SQL
developers.
Hive leverages the concept of external tables to map the data where it
resides, avoiding unnecessary data movement toward the cluster. Data
is accessed only when processed.
External tables support common SQL operators like SELECT, INSERT,
DELETE, JOIN, GROUP BY, and more.
Azure Databricks is a Spark-based platform for massive data
processing. It enables data engineers, data scientists, machine learning
engineers, and data analysts to work together in a collaborative way.
Spark is an open source project that processes high volumes of data in
memory. Databricks was founded by the original creators of Spark,
and its platform is based on an optimized, closed distribution of Spark.
Azure Databricks has native integration with the most popular Azure
data services, such as Azure Storage, Azure SQL Database, Azure
Synapse Analytics, and Azure Cosmos DB.

Spark operates on data through objects called DataFrames. A
DataFrame is based on Resilient Distributed Datasets (RDD), which
are immutable pointers to data stored on distributed or external data
stores.
DataFrames can manipulate data through transformations, which are
object methods that represent logical manipulations of the source data.
Typical transformations include filters, aggregations, joins, and
selection or insertion of columns. Like with external tables in Azure
HDInsight, data is not accessed when a transformation is applied.
DataFrames physically access the data when actions are invoked. Spark
computes an execution plan that takes into account all the applied
transformations and submits a job to the driver node of the cluster.
Typical actions include displaying the data or writing it to a sink data
store.
Spark supports many programming languages, including Scala,
Python, R, SQL, and Java. Code can be entered through notebooks,
which consist of independent cells that share the same context. You
can access variables defined in previously executed cells.
Thanks to versatility and maturity of Spark, Azure Databricks can be
used in many scenarios, such as streaming, batch processing, machine
learning, and graphing of data. In addition, Delta Lake technology can
be used to perform ACID operations on data lakes and to enable time
travel on your data through version history.
Azure Data Factory is a platform for performing data movement and
data processing orchestration. It has a visual authoring tool that you
can use to create, manage, schedule, and monitor pipelines.
A pipeline is a logical grouping of activities. Activities can be used to
perform data movement at scale or to submit jobs to external services,
like Azure HDInsight, Azure Databricks, Azure SQL Database, Azure
Synapse Analytics, and so on.
Data sets are objects used to represent data on a remote data store, and
data stores are connected through linked services.
Integration runtimes are the core of Azure Data Factory, and they
enable communication between linked services, data sets, and

activities.
Azure Data Factory has out-of-the-box connectors to the most popular
services on the market, both on-premises and on the cloud. Access to
sources not facing the internet can be gated through a particular type
of integration runtime, called Self-Hosted Integration Runtime.
Others integration runtimes include the Azure IR and the Azure SSIS
IR. The former is the default IR, whereas the latter can be used to run
SQL Server Integration Services packages on an on-demand cloud
environment.
Mapping data flows are a component of Azure Data Factory that can
be used to author complex data transformations in a visual way.
Behind the scenes, mapping data flows are translated into Spark code
that is submitted to an on-demand Azure Databricks cluster.
Azure Synapse Analytics can leverage the PolyBase component to
access data that resides on external storage. PolyBase leverages the
parallel processing capabilities of the Synapse engine to scale out.
Once you set up PolyBase, you can use external tables in the same
way you do in Hive. In this case, you use T-SQL to query and
manipulate the data.
PolyBase is the fastest possible way to load data into Azure Synapse
Analytics. A well-known practice is to use a staging table (usually a
heap) as an intermediate step between the source data and the
destination table.
Azure Databricks and Azure Data Factory are able to leverage
PolyBase when the sink of a data movement is Azure Synapse
Analytics.
Power BI is not only a data visualization tool, but also has exceptional
data discovery, transformation, and modeling capabilities.
Power BI Desktop is a free tool for authoring Power BI models and
reports.
You can get data from various sources leveraging the numerous
connectors included in Power BI.

Data can be transformed manually or through a powerful visual editor
that outputs Power Query code behind the scenes.
Power BI uses the SQL Server Analysis Services Tabular model to
offer an enterprise-level, in-memory engine for storing and serving
data.
An interactive report in Power BI is an auto-adapting canvas where
you can display your data through compelling and dynamic visuals.
A dashboard is a collection of tiles. Tiles can contain static content or
visuals pinned from reports. The role of dashboards is to give a quick
look at the main trends of your data, or to present important
information.
Dashboards are available only on the Power BI service, and you have
to publish a report to it to be able to pin its visual on a dashboard.
Paginated reports are well suited for free-form and tabular reporting.
They can span multiple pages, and Power BI Report Builder is the tool
of choice for authoring them.

Thought experiment
In this thought experiment, you demonstrate your skills and knowledge
about the topics covered in this chapter. You can find the answers to this
thought experiment in the next section.

The IT Department of Adventure Works, the famous bicycle
manufactoring company, has issued an alert internally since the whole ETL
process that feeds the enterprise data warehouse (EDW) is under pressure;
CPU and memory usages are capped at 100 percent for most of the
transformation phase, and the I/O system has become a huge bottleneck for
both the transformation and the load phases. The EDW must be ready to
deliver fresh data to business analysts at 8 A.M., and the ETL process is
quickly approaching that threshold day by day. This adds up to frequent
complaints from users about reports that are too slow or that time out, and
the growing need to have some sort of dashboarding tool to prepare
attractive presentations for the members of the board.

Currently, the ETL process starts just after midnight; it has to wait for
data from the previous day to settle down to avoid reading inconsistent or
partial information. The ETL process performs the following steps:

1. Enterprise data is gathered from an Oracle database and stored on a
SQL Server database used for staging. Relevant data includes
orders, sales, customers information, and warranty claims issued.

2. About one hundred SQL Server Integration Services packages
perform various transformations inside the staging database in
subsequent steps. One of these packages contains a Web Service
task that consumes an OpenData public service to get weather
information about the previous days. The company is using the
Project Deployment model.

3. When data is ready, it is loaded in an incremental way into the
enterprise data warehouse. The EDW is hosted on-premises, and it
is a SQL Server database. The architecture of the EDW follows the
star-schema model, with fact tables and denormalized dimension
tables. The size of this database is about 50 TiB.

4. Reports are hosted on SQL Server Reporting Services.

After some meetings, the CIO and the CTO agree on the fact that this is
a good opportunity to migrate the current infrastructure to Azure and
engage you on the project as a well-known expert in the field.

These are the most important requirements of the new architecture:
PaaS and SaaS solutions are preferred, and IaaS should be avoided
when possible.
The company wants to limit the impact on the development process as
much as possible. More specifically, they would like to postpone the
complete rewriting of the SQL Server Integration Service packages to
a second phase of the project. The packages contain a lot of business
logic that has to be carefully decoded prior to undergoing some
transformations, and this aspect could be a cause of delay in the
migration.
The BI team is used to the Integration Services development model,
and maintaining the same (or a similar) way of work is considered a
plus.

The Oracle database cannot be exposed to the public internet, and it
must remain behind the corporate firewall.

Considering the described scenario, try to answer the following
questions:
1. How can you extract data from the Oracle database?

A. You ask the IT team to develop a scheduled export of the source data
and to set up a communication channel like SFTP to exchange the
resulting files.

B. You propose to install the Self-Hosted IR on a dedicated virtual
machine inside the company network and link the IR to an Azure Data
Factory service.

C. You also propose to move the Oracle database to Azure.
D. You tell the company that there is no way to get around this problem,

and that Oracle database has to be reachable from Azure.
2. Considering the first phase of the project, what option accommodates the

transformation phase in the best possible way?
A. At least in the first phase, a SQL Server virtual machine with

Integration Services configured on it is the best possible way to go.
B. The BI team should not wait for the second phase to solve this issue.

Instead, they should rewrite packages as soon as possible, converting
them to Azure Data Factory pipelines in order to maintain the same
visual development approach.

C. To avoid IaaS in the architecture, you propose to leverage the Azure
Data Factory capability to run SQL Server Integration Packages
through an SSIS Integration Runtime, hosting the SSIS Catalog on an
Azure SQL Database and targeting it for deployment of the project.

3. In the second phase, which technology can be used to replace the SSIS
packages transformation phase?
A. Mapping data flows
B. A Hadoop cluster on HDInsight
C. Azure Databricks
D. Azure Synapse Analytics

4. Which service will host the enterprise data warehouse in the new
architecture?
A. Azure Synapse Analytics
B. Azure Cosmos DB
C. Azure SQL Database

5. Users are asking for dashboarding capabilities, so you are considering
switching to Power BI service as the new reporting platform of choice for
the company. In this case, would developers have to re-create all the
reports from scratch?
A. Yes, they cannot migrate the actual reports to Power BI.
B. No, actual reports can be easily migrated to Power BI paginated

reports.
C. No, actual reports can be easily migrated to Power BI interactive

reports.

Thought experiment answers
This section contains the solution to the thought experiment. Each answer
explains why the answer choice is correct.
1. B. The Self-Hosted IR specifically targets situations like the one

described in this scenario. Option A is feasible as well since it does not
include any IaaS infrastructure on the Azure side, but it would add
unnecessary extra setup steps and management effort.

2. C. Leveraging the Azure Data Factory SSIS IR is actually the best way to
approach the transition. In fact, you can orchestrate the ETL process
through pipelines, using the Execute SSIS Package activity to run your
packages. In the second phase, if you choose to replace the packages with
another technology, you can keep your existing pipelines almost as they
are, substituting the Execute SSIS Package activities with the proper ones
to match the new technology.

3. A. Mapping data flows is the only option from the list that allows for a
visual design experience of transformation pipelines. As soon as features
currently in public preview are generally available, Azure Synapse
Analytics (through the Azure Synapse Studio web interface) becomes a

viable option as well since it will contain a visual designer for pipelines
and data flows very similar to Azure Data Factory.

4. A. Considering the total size of the data and the star-schema architecture
of the current EDW, Azure Synapse Analytics is probably the best option
to save on storage costs and to guarantee efficient data retrieval.

5. B. Existing reports can be converted to paginated reports with the
dedicated migration tool so that developers do not need to build them
from scratch. Then, they can pick selected reports to be re-created as
interactive reports, with the goal of extending this approach to a wider
number of reports over time.

Index

Numbers
5 V’s of big data, 12–19

Symbols
* (asterisk), using with columns, 126
@ (at) symbol, using in SQL Server, 111

A
ABFS (Azure Blob Filesystem), 165, 168
ABFS or WASB drivers, 226
access management, 109–110
ACID (atomicity, consistency, isolation, durability), 48–50
acquisition, 4
AD (Active Directory). See Azure Active Directory
ADF (Azure Data Factory) v2, 31–34
adjacency list, managing, 140–141
adjacency matrix, 140–141
AES (Advanced Encryption Standard), 108
aggregation and transformation, 4

AI, integrating in pipelines, 16
aliasing long names, 128
ALTER command, 124
Always On availability groups, SQL Server, 84
analytical access, 37
analytics curve, 23
analytics process, 42. See also data analytics
analytics workloads, overview, 203–207
Apache Hive and HiveQL, 257
Apache Kafka, 5
Apache Oozie, 11, 233
Apache Spark, 35–36, 268. See also Azure Databricks
Runtime
ARM (Azure Resource Manager) templates, 95–103, 176–179

creating Cosmos DB account from, 178
getting from Cosmos DB account, 176–177
in GitHub, 181

asterisk (*), using with columns, 126
at (@) symbol, using in SQL Server, 111
atomicity in ACID, 49
attributes, 21
authentication

managing, 108–111
issues with non-relational data, 193–194

authorization
managing, 110
non-relational data, 189–190

AutoML (automated machine learning), 26. See also machine learning
prediction

auto-scaling, Azure HDInsight, 211
az module, using with PowerShell, 104
AzCopy, 196
Azure

datacenter drawing, 59
event hubs and Apache Kafka, 5
services components, 62
services for non-relational workloads, 144

Azure account, obtaining, 1
Azure Active Directory, 110–111, 171
Azure Blob API, 167–168
Azure Blob storage. See also blob storage

API, 167–168
Azure Storage Explorer, 166–167
Blob driver, 165
containers, 164
content from PowerShell, 168–170
content types, 164
data for data analysis, 165
hierarchical structure, 165
.NET client library, 170
organization, 163–164
overview, 163
and Table storage, 144

Azure Cache for Redis, 144
Azure Calculator, 76

Azure CLI (command-line interface), 105–107, 181
Azure Cognitive Services, 16, 144
Azure Cosmos DB API

account and database, 151–155
and Azure Data Explorer, 153
Azure Table, 151
Cassandra, 150–151
configuring consistency, 154
consistency levels, 145–147
Core (SQL), 150
creating account, 177–179
Data Migration tool, 154–155
deploying, 176–179
geo-redundancy, 153–154
getting ARM template from, 176–177
Gremlin (graph storage), 151
high availability, 147
importing data to, 154–155
IOPS (input/output operations per second), 147
JSON example, 149
MongoDB, 149–150
Notebook feature, 153
overview, 144–145
request units, 147–149
tokens, 146
using, 149–151

Azure Data Catalog, 18
Azure Data Explorer, 153, 194–196

Azure Data Factory
Author menu item, 239–240
Azure Blog storage linked service, 248
characteristics, 233
components, 238–239
connectors, 245
Copy Data activity, 242–244
data integration units, 238
data sets, 244–245
data stores connectors, 245–247
expressions and functions, 249
features, 11, 17
home page, 235–236
IR (integration runtime), 237–238
mapping data flows, 271–276
monitoring, 254
parameters, 240
pipeline activities, 239–241
provisioning, 234–235
SSIS (SQL Server Integration Services), 237–238
templates, 235–236
testing connection, 248–249
triggers, 254

Azure Data Lake, accessing, 168
Azure Data Studio, 116–118
Azure databases

MariaDB, 81–82
MySQL, 82–83

PostgreSQL, 79–81
Azure Databricks. See also Spark

access to storage layer, 225
and Apache Spark, 207
Azure portal, 220–221
characteristics, 217–218
clusters, 227–229
connector for Azure Synapse Analytics, 278
control plane, 221–226
Delta Lake, 218
features, 35–36, 217–229, 262–263
joining data, 267
mounting external storage, 227–229
provisioning, 220–224, 227–229
PySpark, 267–268
source data in PySpark, 266
and Spark, 263–264
Spark RDDs, 219–220
specifying schemas, 264–265

Azure Databricks File System, 226
Azure Event Hubs, 206
Azure File Sync, 174
Azure Files storage. See also storage

account mapping information, 173
authentication, 171–173
authorization, 173
Azure File Sync, 174
file share to local drive, 173–174

Kerberos authentication, 171–173
net use command, 174
overview, 170
SMB (Server Message Block) protocol, 170, 174
uploading files, 196

Azure HDInsight
Ambari views, 214–215
appending content, 261
auto-scaling, 211
and Azure portal, 212–216
and Azure SQL Database, 213
clusters, 210, 212–216
considerations, 211
data processing options, 257–262
destination tables, 260–261
features, 11, 35, 206, 209–217
Hive optimization, 262
Hive tables and Azure Blog storage, 260
Hive View console, 258
internal and external tables, 258–259
and Linux, 212
programming languages, 216
provisioning Hadoop cluster, 216–217
SDKs and IDEs, 215
versions of components, 211

Azure Key Vault, 108, 185, 248. See also encryption
Azure Kubernetes Service (AKS), 27
Azure Marketplace, 18

Azure ML (Machine Learning) Designer, 26–27
Azure .NET libraries, 181–182
Azure portal

ARM templates, 102–103
and Azure HDInsight, 212–216
creating Cosmos DB account from, 177
features, 67–69, 90–95

Azure services, authorized by default, 183
Azure SQL Database. See also SQL (Structured Query Language)

and Azure HDInsight, 213
creating, 67–69
features, 63
purchasing models, 64
segmentations, 64–66
service models, 67–69
using, 15, 89, 92, 108

Azure SQL-MI (Managed Instance), 83–86, 108
Azure Storage

access tiers, 156–157
account types, 156
creating accounts, 158
deploying, 178–179
lifecycle management, 157
NFS v3, 158
performance levels, 155
replication options, 157
service exposition, 156

Azure Stream Analytics, 10, 206

Azure Synapse Analytics. See also PolyBase T-SQL query language;
Synapse pool
configuring PolyBase in, 269
CREATE EXTERNAL TABLE AS SELECT statement, 270
creating pools, 74
data processing capabilities, 231
external tables, 269–270
overview, 229–231
private and public preview, 276
provisioning SQL pool, 231–232
using, 12–13, 36, 69–74, 229–232
writing to blob storage, 270–271

Azure Table API, 151
Azure Table storage. See also tables

API, 159–161
connecting to, 162–163
creating tables, 161–162
non-relational workloads, 144
OData specification, 159
overview, 158–159

B
batch data

approach, 18–19
described, 10–12
versus streaming data, 19–20

workload type, 2
batch layer versus speed layer, 14
batch workload, 205–206
BI (business intelligence) projects, 29, 42. See also Power BI service
big data

value, 18
variety, 14–16
velocity, 14
veracity, 17–18
volume, 12–14

binary file formats, 16
Blob driver, 165
Blob service REST API, 167–168
blob storage. See Azure Blob storage

managing content in, 168–170
writing to in Azure Synapse Analytics, 270–271

blobs, uploading content to, 196
blocking transformations, 31
BSON (Binary JSON), 139
B-tree storage, 137–138

C
Cached mode versus DirectQuery, 71
card visual, using in reports, 41
Cassandra API, 150–151
character data type, 55

charts
and data visualization, 36–42
using in reports, 38–39, 41

CLI (command-line interface), using with Blob storage, 169–170
cloud, moving data to, 89
Cloud Shell, using with Azure CLI, 106–107
clustered columnstore indexes, 63. See also indexes
Codd, Edgar F., 20
columnar data store, 139–140, 144
columnstore indexes, 63
commands

ALTER, 124
DROP, 124
RENAME, 125

computing nodes, 72
connectivity issues, non-relational data, 190–194
connectivity issues, identifying, 112–114. See also network security
consistency in ACID, 49
constraints, 21
consumer groups, 5–6
consumers, 4
Copy Data Wizard, 250–254
Core (SQL) API, 150
Cosmos Explorer, 197
costs, estimating for SQL server in VM, 76
CREATE EXTERNAL TABLE AS SELECT statement, 270
CREATE TABLE AS SELECT statement, 277
CRM (customer relationship management), 62

cube structure, SQL Server analysis services, 70
customer churn, 24

D
dashboarding access, 37
dashboards, 294–297. See also Power BI service
data

layered access to, 37
migrating with DMS, 84
volatility of, 14

data analytics. See also analytics process; on-demand data analysis
core concepts, 23
techniques, 23–28

Data Control Language, 126
data encryption, 108, 184–185. See also Azure Key Vault
data flows, mapping in Azure Data Factory, 271–276
data governance, 18
data ingestion and processing

Azure Data Factory, 233–249
overview, 232

data integration units, Azure Data Factory, 238
data lake, 2
data loading, 276–278
Data Migration tool, downloading, 154–155. See also migrating data with

DMS
data pipelines

data transformations, 28
sources and destinations, 28

data processing options
Azure Data Factory, 271–276
Azure Databricks, 262–268
Azure HDInsight, 257–262
Azure Synapse Analytics, 268–271
output field list, 256–257
overview, 254–257

data protection, non-relational data, 185–186
Data Quality Services, 17
data secure layers, 107
data security components

AzCopy, 196
Azure Data Explorer, 194–196
connectivity issues, 190–194
Cosmos Explorer, 197
management tools, 194–198
non-relational data workloads, 182–190

data security components, identifying, 107–110
data sets, 294
data stores for non-relational data

choosing, 142
types, 137–142

data storytelling, 294
data stream, 3
data stream flow

acquisition, 4

aggregation and transformation, 4
production, 3
storage, 4

data structures, classifications, 15–16
data virtualization, 13, 35
data visualization and chart types, 36–42
data warehouse architecture, 2, 19, 53, 207–208. See also modern data

warehouses
data warehousing

Azure data services, 208–209
Azure HDInsight, 209–216

data workloads
batch data, 10–19
streaming data, 3–10
types of, 1–2

database schema versus semantic model, 50. See also multidimensional
databases

DBFS (Databricks File System), 225
DDL (Data Definition Language), 123–125
Delete structure, 125
Delta Lake, Azure Databricks, 218
deployment

managing with Azure CLI, 105–107
managing with PowerShell, 103–105

descriptive analysis, 23
diagnostic analysis, 23
dictionary and key-value store, 137
directed graph, 140

DirectQuery versus Cached mode, 71
disk images, creating, 76
DISM (Deployment Image Servicing and Management), 76
DML (Data Manipulation Language), 125–126
DMS (Database Migration Service), 84
document store, 138–139, 144
domains, 21
DROP command, 124
DTS (Data Transformation), 30
DTU-based purchase model, 64–67
durability in ACID, 50
DWUs (data warehouse units), 73
Dynamic Data Masking, 108

E
EDW (enterprise data warehouse), 42
elasticity, 60–61
ELT (extract-load-transform), 34–36, 205
encryption. See data encryption, 108, 184–185. See also Azure Key Vault
encryption keys, configuring and storing, 185
ERP (enterprise resource planning), 62
errors, searching for, 114
ETL (extract-transform-load), 29–34, 205
Event Hub Capture, 5
event hubs, auditing, 109
events and session windows, 9–10

external storage, mounting, 227–229

F
Fiddler tool and connectivity issues, 190–191
file storage. See Azure Files storage
firewall rules, non-relational data, 182–183
firewalls

managing, 107–111
non-relational data, 182–183

form recognition, 16
FQDN (fully qualified domain name), 94
fraud detection, 24
Free Tier account, non-relational data, 177
FROM clause, 128
Fuzzy Lookup/Fuzzy Grouping, 17

G
geo-redundancy, Azure Cosmos DB API, 153–154
GIGO (garbage-in, garbage-out), 17
global distribution, 59
graph store, 140–141, 144
Gremlin (graph storage) API, 151
GRS (geo-redundant storage), 157
GZRS (geo-zone-redundant storage), 157

H
Hadoop framework, 12–13, 209
hash table and key-value store, 137
HBase in HDInsight, 144
HDFS (Hadoop Distributed File System), 35, 210
HiveQL, 257
hopping window, 7–8
horizontal partitioning, 30

I
IaaS (infrastructure as a service), 17, 60, 62
image classification, 16
incoming events, off-loading, 5
indexed information, searching, 144
indexes, relational database structures, 55–56. See also clustered

columnstore indexes
information

protection, 108
retrieval, 16

in-memory technologies, 63
INNER JOIN clause, 128
input attributes as features, 24
input rate versus processing rate, 5
Insert structure, 125
IntelliSense, Azure Data Studio, 118
isolation in ACID, 49

IT (information technology) infrastructure, 58

J
JSON (JavaScript Object Notation), 15–16, 138–139

K
Kerberos authentication, Azure File storage, 171–173
key-value store, 137–138, 144
KPI (key performance indicator)

and dashboards, 294
and SQL Server analysis services, 71
using in reports, 41

L
law of the instrument, 254
LEFT OUTER JOIN, 129
lifecycle management, Azure Storage, 157
line chart, using in reports, 39
Linux and Azure HDInsight, 212
long names, aliasing, 128
LRS (locally redundant storage), 157

M
machine learning prediction, 16. See also AutoML (automated machine

learning)
map chart, using in reports, 41–42
MariaDB, 81–82
Master Data Services, 17
matrix visual, using in reports, 38
message identifications, 192
Microsoft

Learn Path, 10, 19
SQL Server, 15

Microsoft SQL Server Enterprise Edition, 17
migrating data with DMS, 84. See also Data Migration tool
MLFlow platform, 26
MLOPs (machine learning operations), 26
modern data warehousing. See also data warehouse architecture

architecture and workload, 207–208
Azure Databricks, 217–229
Azure HDInsight, 209–217
Azure Synapse Analytics, 229–232
defined, 204
services, 208–209

MongoDB API, 149–150
monitor logs, 109
mounting external storage, 227–229
MPP (massively parallel processing) architectures, 12, 35, 72, 205
multidimensional databases, 69. See also database schema versus semantic

model

MySQL, 82–83, 131

N
names, aliasing, 128
NetMon (Network Monitor) tool, 191
network security, 111–112, 192. See also connectivity issues
NFS v3, 158
non-relational data. See also relational data

authentication, 186–189, 193–194
authorization, 189–190
Azure data services for, 144
characteristics, 136
choosing data stores, 142
columnar data store, 139–140
connectivity issues, 190–193
data protection, 185–186
deploying Azure Cosmos DB, 176
document store, 138–139
firewall rules, 182–183
Free Tier account, 177
graph store, 140–141
identifying data services for, 144
key-value store, 137
object data store, 142
provisioning and deployment, 175
reasons for using, 143

secure transfer, 183–184
storage data encryption, 184–185
time series store, 141
TLS (Transport Layer Security) version, 184

non-relational workload, 205
NoSQL databases, 15, 136–142
numbers data type, 55
nvarchar (nchar) (National CHARacters), 55

O
object data store, 142, 144
OData specification, Azure Table storage API, 159–160
ODBC (Open Database Connectivity), 14
Office 365 SaaS, 62
OLAP (online analytical processing), 19, 22, 52
OLTP (online transaction processing), 22, 48–51
on-demand data analysis, 13. See also data analytics
ONNX (Open Neural Network Exchange), 28
operating systems and SQL versions, 75
ORDER BY, 127, 130

P
PaaS (platform as a service), 61–62
paginated reporting, 297–299. See also reports
paginated reports, 42

partitioning, 30
pie chart, using in reports, 39–40
pinning objects on dashboards, 294–295
pipeline

checking wealth of, 5
creating and running, 250–254

PoCs (proofs of concept), 207
policies and data protection, 186
PolyBase T-SQL query language. See also Azure Synapse Analytics

configuring for Azure Blob storage, 268–269
configuring in Azure Synapse Analytics, 269
using, 14, 71–72

pool tables, 71
PostgreSQL databases, 79–81, 129–131
Power BI Desktop, downloading, 280
Power BI Report Builder, 298
Power BI Report Server, 299
Power BI service. See also BI (business intelligence) projects; dashboards

connectors, 281–283
dashboards, 294–297
data alerting/notifications, 295
data modeling, 280
Data view, 285
dual tables, 283
exploring data, 296
Get Data window, 282
interactive reports, 279–293
Model view, 284, 287

overview, 278
paginated reporting, 297–299
plans and features, 291
portal, 292
Power Query Editor, 286, 288
publishing and sharing, 293
reading view, 293
release of, 42
Report view, 289–291
workflow, 279

PowerShell
and Azure Storage, 178–179
commands for Cosmos DB, 179
creating Cosmos DB account from, 177
managing deployment, 103–105
storage account and container, 180–182

PowerShell Azure library, using with blob storage, 168–170
predictive analysis, 24
prescriptive analysis, 24
primary key, 21
private and public preview, 276
private connections, using, 192–193
procedures, relational databases, 58
process rate versus input rate, 5
producers, 3
PySpark

file schema in, 265
joining data in, 267

source data in, 266
writing data to files, 267–268

Q
Query Editor, 115
Query Performance Insight, 64
query techniques, SQL language, 122–126
query tools, identifying, 114–122
querying data

MySQL, 131
PostgreSQL databases, 129–131
SQL Server databases, 126–129

R
raw data, 4
RBAC (role-based access control), 171
regex (regular expressions), 17
relational Azure data services

IaaS (infrastructure as a service), 60
overview, 58–59
PaaS (platform as a service), 61
SaaS (software as a service), 61–62

relational data. See also non-relational data
characters, 55
columns and constrains, 53–55

deployment of services, 87–90
indexes, 55–56
numbers, 55
procedures, 58
provisioning, 87–90
querying, 126–131
tables, 53–55
theory and practice, 20–22
types of, 55
views, 56–58

relational data services, provisioning and deploying, 87–90
relational workload, 204–205
RENAME command, 125
replication and data protection, 185
reporting access, 37
reports, visuals used in, 38–41. See also paginated reporting; SSRS (SQL

Server Reporting Services)
resource errors, 114
resource groups, 92
resource providers, ARM, 95–96
resources

increasing and reducing, 60
overuse errors, 114

retention period, 5
road vehicle trips analysis, 4
routing preferences, non-relational data, 183

S
SaaS (software as a service), 61–62
scatter chart, using in reports, 40
schema drift, 14
secure transfer, non-relational data, 183–184
security. See data security components
SELECT statement, 126–128
semantic model versus database schema, 50
semi-structured data, 15
sentiment analysis, 16
servers, registering, 174
serving layer, 42
session window, 9–10
shared resource model, 66
single source of truth, 22
sliding window, 8–9
SLOs (service level objectives), 73–74
SMB (Server Message Block) protocol, Azure File storage, 170
SMEs (subject matter experts), 23
SMP (symmetric multiprocessing) systems, 12
soundex, 17
Spark, 35–36, 268. See also Azure Databricks
speed layer versus batch layer, 14
SQL (Structured Query Language). See also Azure SQL Database

operators, 21
query techniques, 122–131

SQL DW (Datawarehouse), 71

SQL Server
adding, 69
Always On availability groups, 84
analysis services, 69–74
avoiding syntax errors, 111
on Azure VM (virtual machine), 74–79, 89–90
in-engine prediction, 27–28
implementing inside VM, 74–79
querying data, 126–129

SQL Server Reporting Services, 297
SQL versions and operating systems, 75
sqlcmd utility, 115–116
SQL-MI (Managed Instance), 83–86, 89
SSIS (SQL Server Integration Services) Enterprise Edition, 17, 30–33
SSIS workloads, migrating, 238
SSMS (SQL Server Management Studio), 110–111, 113, 118–121, 124
SSOT (single source of truth), 208
SSRS (SQL Server Reporting Services), 42. See also reports
stacked column chart, using in reports, 38–39
statistics, use of, 57
storage, 4. See also Azure Files storage
storage account

Azure portal, 95
and container using PowerShell, 180–182
creating, 158

storage data encryption, non-relational data, 184–185
storage devices, 144
Storage Explorer, 161–162, 166–167

stream processing overview, 4
stream processing pipeline, 3
stream window aggregation, 6
streaming

data sets, 294
workload, 206

streaming data
versus batch data, 19–20
use case, 4

structured data, 15

T
table visual, using in reports, 38
tables, relational database structures, 53–55. See also Azure Table storage
tabular models, 71
TCO (total cost of ownership), 58
TDE (Transparent Data Encryption), 108
TDSP (Team Data Science Process), 24–26
Template URI, using for ARM templates, 181
threat protection, 109
time series store, 141, 144
time window aggregations, 5–6
TLS (Transport Layer Security), 184
transformations

and aggregation, 4
performing, 34

processes, 53
T-SQL (Transact Structured Query Language), 21, 126–129
T-SQL query language, PolyBase, 14
tumbling window, 7
tuples, 21

U
unified analytics platform, 217
unstructured data, 16
Update structure, 125

V
value and big data, 18
variety and big data, 14–16
vCore-based purchasing model, 64–67
velocity and big data, 14
veracity and big data, 17–18
views, relational database structures, 56–58
Visual Studio Cloud Explorer, 197–198
visualization, 18
VM (virtual machine)

implementing SQL Server in, 74–79
templates, 61

volatility of data, 14
volume and batch data, 12–14

VPNs (virtual private networks), 192

W
WASB or ABFS drivers, 226
watermarks, 5–6
WHERE predicate, 127
Wireshark network analyzer, 191
Word document, structure of, 136
workloads, types of, 2

X
XML (Extensible Markup Language) documents, 15, 138

Z
ZRS (zone-redundant storage), 157

Code Snippets

Many titles include programming code or configuration examples. To
optimize the presentation of these elements, view the eBook in single-
column, landscape mode and adjust the font size to the smallest setting. In
addition to presenting code and configurations in the reflowable text format,
we have included images of the code that mimic the presentation found in
the print book; therefore, where the reflowable format may compromise the
presentation of the code listing, you will see a “Click here to view code
image” link. Click the link to view the print-fidelity code image. To return
to the previous page viewed, click the Back button on your device or app.

Contents
Cover Page
Title Page
Copyright Page
Contents at a Glance
Table of Contents
Acknowledgments
About the Authors
Introduction

Organization of this book
Preparing for the exam
Microsoft certifications
Quick access to online references
Errata, updates & book support
Stay in touch

Chapter 1. Describe core data concepts
Skill 1.1: Describe types of core data workloads
Skill 1.2: Describe data analytics core concepts
Chapter summary
Thought experiment
Thought experiment answers

Chapter 2. Describe how to work with relational data on Azure
Skill 2.1: Describe relational data workloads
Skill 2.2: Describe relational Azure data services
Skill 2.3: Identify basic management tasks for relational data
Skill 2.4: Describe query techniques for data using SQL
language
Chapter summary
Thought experiment
Thought experiment answers

Chapter 3. Describe how to work with non-relational data on Azure

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/cover.xhtml

Skill 3.1: Describe non-relational data workloads
Skill 3.2: Describe non-relational data offerings on Azure
Skill 3.3: Identify basic management tasks for non-relational
data
Chapter summary
Thought experiment
Thought experiment answers

Chapter 4. Describe an analytics workload on Azure
Skill 4.1: Describe analytics workloads
Skill 4.2: Describe the components of a modern data
warehouse
Skill 4.3: Describe data ingestion and processing on Azure
Skill 4.4: Describe data visualization in Microsoft Power BI
Chapter summary
Thought experiment
Thought experiment answers

Index
Code Snippets
i
ii
iii
iv
v
vi
vii
viii
ix
x
xi
xii
xiii
xiv
xv
xvi
1

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_wanslq/tposmz_pdf_out/OEBPS/Images/ch01_images.xhtml#ch01_images

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	Acknowledgments
	About the Authors
	Introduction
	Organization of this book
	Preparing for the exam
	Microsoft certifications
	Quick access to online references
	Errata, updates & book support
	Stay in touch

	Chapter 1. Describe core data concepts
	Skill 1.1: Describe types of core data workloads
	Skill 1.2: Describe data analytics core concepts
	Chapter summary
	Thought experiment
	Thought experiment answers

	Chapter 2. Describe how to work with relational data on Azure
	Skill 2.1: Describe relational data workloads
	Skill 2.2: Describe relational Azure data services
	Skill 2.3: Identify basic management tasks for relational data
	Skill 2.4: Describe query techniques for data using SQL language
	Chapter summary
	Thought experiment
	Thought experiment answers

	Chapter 3. Describe how to work with non-relational data on Azure
	Skill 3.1: Describe non-relational data workloads
	Skill 3.2: Describe non-relational data offerings on Azure
	Skill 3.3: Identify basic management tasks for non-relational data
	Chapter summary
	Thought experiment
	Thought experiment answers

	Chapter 4. Describe an analytics workload on Azure
	Skill 4.1: Describe analytics workloads
	Skill 4.2: Describe the components of a modern data warehouse
	Skill 4.3: Describe data ingestion and processing on Azure
	Skill 4.4: Describe data visualization in Microsoft Power BI
	Chapter summary
	Thought experiment
	Thought experiment answers

	Index
	Code Snippets

